Tang, Y. L. et al. Remark of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 movies. Science 348, 547–551 (2015).
Google Scholar
Yadav, A. Okay. et al. Remark of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).
Google Scholar
Nahas, Y., Prokhorenko, S., Fischer, J., Xu, B. & Bellaiche, L. Inverse transition of labyrinthine area patterns in ferroelectric skinny movies. Nature 577, 47–51 (2020).
Google Scholar
Das, S. et al. Remark of room-temperature polar skyrmions. Nature 568, 368–372 (2019).
Google Scholar
Wang, Y. J. et al. Polar meron lattice in strained oxide ferroelectrics. Nat. Mater. 19, 881–886 (2020).
Google Scholar
Seidel, J. et al. Conduction at area partitions in oxide multiferroics. Nat. Mater. 8, 229–234 (2009).
Google Scholar
Zubko, P. et al. Damaging capacitance in multidomain ferroelectric superlattices. Nature 534, 524–528 (2016).
Google Scholar
Eliseev, E. A. et al. Labyrinthine domains in ferroelectric nanoparticles: manifestation of a gradient-induced morphological transition. Phys. Rev. B 98, 054101 (2018).
Google Scholar
Wei, X. Okay. et al. Neel-like area partitions in ferroelectric Pb(Zr,Ti)O3 single crystals. Nat. Commun. 7, 12385 (2016).
Google Scholar
Prokhorenko, S., Nahas, Y. & Bellaiche, L. Fluctuations and topological defects in correct ferroelectric crystals. Phys. Rev. Lett. 118, 147601 (2017).
Google Scholar
Zhang, Q. et al. Nanoscale bubble domains and topological transitions in ultrathin ferroelectric movies. Adv. Mater. 29, 1702375 (2017).
Peters, J. J. P., Apachitei, G., Beanland, R., Alexe, M. & Sanchez, A. M. Polarization curling and flux closures in multiferroic tunnel junctions. Nat. Commun. 7, 13484 (2016).
Google Scholar
Xu, R., Karthik, J., Damodaran, A. R. & Martin, L. W. Stationary area wall contribution to enhanced ferroelectric susceptibility. Nat. Commun. 5, 3120 (2014).
Google Scholar
Wada, S., Yako, Okay., Yokoo, Okay., Kakemoto, H. & Tsurumi, T. Area wall engineering in barium titanate single crystals for enhanced piezoelectric properties. Ferroelectrics 334, 17–27 (2006).
Google Scholar
Naumov, I. I., Bellaiche, L. & Fu, H. Uncommon section transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).
Google Scholar
Stachiotti, M. G. & Sepliarsky, M. Toroidal ferroelectricity in PbTiO3 nanoparticles. Phys. Rev. Lett. 106, 137601 (2011).
Google Scholar
Lu, D. et al. Synthesis of freestanding single-crystal perovskite movies and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15, 1255–1260 (2016).
Google Scholar
Kim, Okay. E. et al. Configurable topological textures in pressure graded ferroelectric nanoplates. Nat. Commun. 9, 403 (2018).
Google Scholar
Kim, J., You, M., Kim, Okay.-E., Chu, Okay. & Yang, C.-H. Synthetic creation and separation of a single vortex–antivortex pair in a ferroelectric flatland. npj Quantum Mater. 4, 29 (2019).
Google Scholar
Tsuda, Okay., Yasuhara, A. & Tanaka, M. Two-dimensional mapping of polarizations of rhombohedral nanostructures within the tetragonal section of BaTiO3 by the mixed use of the scanning transmission electron microscopy and convergent-beam electron diffraction strategies. Appl. Phys. Lett. 103, 082908 (2013).
Google Scholar
Yadav, A. Okay. et al. Spatially resolved steady-state destructive capacitance. Nature 565, 468–471 (2019).
Google Scholar
Kalinin, S. V. et al. Spatial decision, data restrict, and distinction switch in piezoresponse power microscopy. Nanotechnology 17, 3400–3411 (2006).
Google Scholar
Tian, L. et al. Nanoscale polarization profile throughout a 180° ferroelectric area wall extracted by quantitative piezoelectric power microscopy. J. Appl. Phys. 104, 074110 (2008).
Google Scholar
Lee, D. et al. Emergence of room-temperature ferroelectricity at decreased dimensions. Science 349, 1314–1317 (2015).
Google Scholar
Kim, S. D., Hwang, G. T., Tune, Okay., Chang, Okay. J. & Choi, S. Y. Inverse size-dependence of piezoelectricity in single BaTiO3 nanoparticles. Nano Power 58, 78–84 (2019).
Google Scholar
Zhong, W., Vanderbilt, D. & Rabe, Okay. M. Part transitions in BaTiO3 from first rules. Phys. Rev. Lett. 73, 1861–1864 (1994).
Google Scholar
Bellaiche, L., Garcia, A. & Vanderbilt, D. Finite-temperature properties of Pb(Zr1−xTix)O3 alloys from first rules. Phys. Rev. Lett. 84, 5427–5430 (2000).
Google Scholar
Mermin, N. D. The topological idea of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979).
Google Scholar
Prosandeev, S. & Bellaiche, L. Uneven screening of the depolarizing area in a ferroelectric skinny movie. Phys. Rev. B 75, 172109 (2007).
Google Scholar
Nahas, Y. et al. Topology and management of self-assembled area patterns in low-dimensional ferroelectrics. Nat. Commun. 11, 5779 (2020).
Google Scholar
Kornev, I., Fu, H. & Bellaiche, L. Ultrathin movies of ferroelectric strong options underneath a residual depolarizing area. Phys. Rev. Lett. 93, 196104 (2004).
Google Scholar
Hsing, G. H.-C. Pressure and Defect Engineering for Tailor-made Electrical Properties in Perovskite Oxide Skinny Movies and Superlattices. PhD Thesis, State Univ. New York at Stony Brook (2017).
Edwards, D. et al. Large resistive switching in blended section BiFeO3 through section inhabitants management. Nanoscale 10, 17629 (2018).
Google Scholar
Crassous, A., Sluka, T., Tagantsev, A. Okay. & Setter, N. Polarization cost as a reconfigurable quasi-dopant in ferroelectric skinny movies. Nat. Nanotechnol. 10, 614–618 (2015).
Google Scholar
Ma, J. et al. Controllable conductive readout in self-assembled, topologically confined ferroelectric area partitions. Nat. Nanotechnol. 13, 947–952 (2018).
Google Scholar
Zhang, Q. et al. Deterministic switching of ferroelectric bubble nanodomains. Adv. Funct. Mater. 29, 1808573 (2019).
Li, Z. et al. Excessive-density array of ferroelectric nanodots with strong and reversibly switchable topological area states. Sci. Adv. 3, e1700919 (2017).
Google Scholar
Ding, L. L. et al. Characterization and management of vortex and antivortex area defects in quadrilateral ferroelectric nanodots. Phys. Rev. Mater. 3, 104417 (2019).
Google Scholar
Rodriguez, B. J., Callahan, C., Kalinin, S. V. & Proksch, R. Twin-frequency resonance-tracking atomic power microscopy. Nanotechnology 18, 475504 (2007).
Google Scholar
Waghmare, U. V. & Rabe, Okay. M. Ab initio statistical mechanics of the ferroelectric section transition in PbTiO3. Phys. Rev. B 55, 6161 (1997).
Google Scholar
Zhong, W., Vanderbilt, D. & Rabe, Okay. M. First-principles idea of ferroelectric section transitions for perovskites: the case of BaTiO3. Phys. Rev. B 52, 6301 (1995).
Google Scholar
Nishimatsu, T., Grünebohm, A., Waghmare, U. V. & Kubo, M. Molecular dynamics simulations of chemically disordered ferroelectric (Ba,Sr)TiO3 with a semi-empirical efficient Hamiltonian. J. Phys. Soc. Jpn 85, 114714 (2016).
Google Scholar
Ponomareva, I., Naumov, I. I., Kornev, I., Fu, H. & Bellaiche, L. Atomistic remedy of depolarizing vitality and area in ferroelectric nanostructures. Phys. Rev. B 72, 140102(R) (2005).
Google Scholar
Xu, B. et al. Intrinsic polarization switching mechanisms in BiFeO3. Phys. Rev. B 95, 104104 (2017).
Google Scholar
Prokhorenko, S., Kalke, Okay., Nahas, Y. & Bellaiche, L. Massive scale hybrid Monte Carlo simulations for construction and property prediction. npj Comput. Mater. 4, 80 (2018).
Google Scholar
Manton, N. & Schwarz, N. in Topological Solitons Ch. 3 (eds Manton, N. & Sutcliffe, P.) 506 (Cambridge Univ. Press, 2004).
Nahas, Y. et al. Discovery of steady skyrmionic state in ferroelectric nanocomposites. Nat. Commun. 6, 8542 (2015).
Google Scholar
Berg, B. & Lüscher, M. Definition and statistical distributions of a topological quantity within the lattice O(3) σ-model. Nucl. Phys. B 190, 412–424 (1981).
Google Scholar
Kiselev, N. S. Experimental commentary of chiral magnetic bobbers in B20-type FeGe. Nat. Nanotechnol. 13, 451–455 (2018).
Google Scholar