High-density switchable skyrmion-like polar nanodomains integrated on silicon


  • Tang, Y. L. et al. Remark of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 movies. Science 348, 547–551 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yadav, A. Okay. et al. Remark of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nahas, Y., Prokhorenko, S., Fischer, J., Xu, B. & Bellaiche, L. Inverse transition of labyrinthine area patterns in ferroelectric skinny movies. Nature 577, 47–51 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Das, S. et al. Remark of room-temperature polar skyrmions. Nature 568, 368–372 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y. J. et al. Polar meron lattice in strained oxide ferroelectrics. Nat. Mater. 19, 881–886 (2020).

    ADS 
    PubMed 

    Google Scholar 

  • Seidel, J. et al. Conduction at area partitions in oxide multiferroics. Nat. Mater. 8, 229–234 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zubko, P. et al. Damaging capacitance in multidomain ferroelectric superlattices. Nature 534, 524–528 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Eliseev, E. A. et al. Labyrinthine domains in ferroelectric nanoparticles: manifestation of a gradient-induced morphological transition. Phys. Rev. B 98, 054101 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Wei, X. Okay. et al. Neel-like area partitions in ferroelectric Pb(Zr,Ti)O3 single crystals. Nat. Commun. 7, 12385 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prokhorenko, S., Nahas, Y. & Bellaiche, L. Fluctuations and topological defects in correct ferroelectric crystals. Phys. Rev. Lett. 118, 147601 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Q. et al. Nanoscale bubble domains and topological transitions in ultrathin ferroelectric movies. Adv. Mater. 29, 1702375 (2017).

    Google Scholar 

  • Peters, J. J. P., Apachitei, G., Beanland, R., Alexe, M. & Sanchez, A. M. Polarization curling and flux closures in multiferroic tunnel junctions. Nat. Commun. 7, 13484 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, R., Karthik, J., Damodaran, A. R. & Martin, L. W. Stationary area wall contribution to enhanced ferroelectric susceptibility. Nat. Commun. 5, 3120 (2014).

    ADS 
    PubMed 

    Google Scholar 

  • Wada, S., Yako, Okay., Yokoo, Okay., Kakemoto, H. & Tsurumi, T. Area wall engineering in barium titanate single crystals for enhanced piezoelectric properties. Ferroelectrics 334, 17–27 (2006).

    CAS 

    Google Scholar 

  • Naumov, I. I., Bellaiche, L. & Fu, H. Uncommon section transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Stachiotti, M. G. & Sepliarsky, M. Toroidal ferroelectricity in PbTiO3 nanoparticles. Phys. Rev. Lett. 106, 137601 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lu, D. et al. Synthesis of freestanding single-crystal perovskite movies and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15, 1255–1260 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, Okay. E. et al. Configurable topological textures in pressure graded ferroelectric nanoplates. Nat. Commun. 9, 403 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, J., You, M., Kim, Okay.-E., Chu, Okay. & Yang, C.-H. Synthetic creation and separation of a single vortex–antivortex pair in a ferroelectric flatland. npj Quantum Mater. 4, 29 (2019).

    ADS 

    Google Scholar 

  • Tsuda, Okay., Yasuhara, A. & Tanaka, M. Two-dimensional mapping of polarizations of rhombohedral nanostructures within the tetragonal section of BaTiO3 by the mixed use of the scanning transmission electron microscopy and convergent-beam electron diffraction strategies. Appl. Phys. Lett. 103, 082908 (2013).

    ADS 

    Google Scholar 

  • Yadav, A. Okay. et al. Spatially resolved steady-state destructive capacitance. Nature 565, 468–471 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kalinin, S. V. et al. Spatial decision, data restrict, and distinction switch in piezoresponse power microscopy. Nanotechnology 17, 3400–3411 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tian, L. et al. Nanoscale polarization profile throughout a 180° ferroelectric area wall extracted by quantitative piezoelectric power microscopy. J. Appl. Phys. 104, 074110 (2008).

    ADS 

    Google Scholar 

  • Lee, D. et al. Emergence of room-temperature ferroelectricity at decreased dimensions. Science 349, 1314–1317 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, S. D., Hwang, G. T., Tune, Okay., Chang, Okay. J. & Choi, S. Y. Inverse size-dependence of piezoelectricity in single BaTiO3 nanoparticles. Nano Power 58, 78–84 (2019).

    CAS 

    Google Scholar 

  • Zhong, W., Vanderbilt, D. & Rabe, Okay. M. Part transitions in BaTiO3 from first rules. Phys. Rev. Lett. 73, 1861–1864 (1994).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bellaiche, L., Garcia, A. & Vanderbilt, D. Finite-temperature properties of Pb(Zr1−xTix)O3 alloys from first rules. Phys. Rev. Lett. 84, 5427–5430 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mermin, N. D. The topological idea of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • Prosandeev, S. & Bellaiche, L. Uneven screening of the depolarizing area in a ferroelectric skinny movie. Phys. Rev. B 75, 172109 (2007).

    ADS 

    Google Scholar 

  • Nahas, Y. et al. Topology and management of self-assembled area patterns in low-dimensional ferroelectrics. Nat. Commun. 11, 5779 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kornev, I., Fu, H. & Bellaiche, L. Ultrathin movies of ferroelectric strong options underneath a residual depolarizing area. Phys. Rev. Lett. 93, 196104 (2004).

    ADS 
    PubMed 

    Google Scholar 

  • Hsing, G. H.-C. Pressure and Defect Engineering for Tailor-made Electrical Properties in Perovskite Oxide Skinny Movies and Superlattices. PhD Thesis, State Univ. New York at Stony Brook (2017).

  • Edwards, D. et al. Large resistive switching in blended section BiFeO3 through section inhabitants management. Nanoscale 10, 17629 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Crassous, A., Sluka, T., Tagantsev, A. Okay. & Setter, N. Polarization cost as a reconfigurable quasi-dopant in ferroelectric skinny movies. Nat. Nanotechnol. 10, 614–618 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ma, J. et al. Controllable conductive readout in self-assembled, topologically confined ferroelectric area partitions. Nat. Nanotechnol. 13, 947–952 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • Zhang, Q. et al. Deterministic switching of ferroelectric bubble nanodomains. Adv. Funct. Mater. 29, 1808573 (2019).

    Google Scholar 

  • Li, Z. et al. Excessive-density array of ferroelectric nanodots with strong and reversibly switchable topological area states. Sci. Adv. 3, e1700919 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ding, L. L. et al. Characterization and management of vortex and antivortex area defects in quadrilateral ferroelectric nanodots. Phys. Rev. Mater. 3, 104417 (2019).

    CAS 

    Google Scholar 

  • Rodriguez, B. J., Callahan, C., Kalinin, S. V. & Proksch, R. Twin-frequency resonance-tracking atomic power microscopy. Nanotechnology 18, 475504 (2007).

    ADS 

    Google Scholar 

  • Waghmare, U. V. & Rabe, Okay. M. Ab initio statistical mechanics of the ferroelectric section transition in PbTiO3. Phys. Rev. B 55, 6161 (1997).

    ADS 
    CAS 

    Google Scholar 

  • Zhong, W., Vanderbilt, D. & Rabe, Okay. M. First-principles idea of ferroelectric section transitions for perovskites: the case of BaTiO3. Phys. Rev. B 52, 6301 (1995).

    ADS 
    CAS 

    Google Scholar 

  • Nishimatsu, T., Grünebohm, A., Waghmare, U. V. & Kubo, M. Molecular dynamics simulations of chemically disordered ferroelectric (Ba,Sr)TiO3 with a semi-empirical efficient Hamiltonian. J. Phys. Soc. Jpn 85, 114714 (2016).

    ADS 

    Google Scholar 

  • Ponomareva, I., Naumov, I. I., Kornev, I., Fu, H. & Bellaiche, L. Atomistic remedy of depolarizing vitality and area in ferroelectric nanostructures. Phys. Rev. B 72, 140102(R) (2005).

    ADS 

    Google Scholar 

  • Xu, B. et al. Intrinsic polarization switching mechanisms in BiFeO3. Phys. Rev. B 95, 104104 (2017).

    ADS 

    Google Scholar 

  • Prokhorenko, S., Kalke, Okay., Nahas, Y. & Bellaiche, L. Massive scale hybrid Monte Carlo simulations for construction and property prediction. npj Comput. Mater. 4, 80 (2018).

    ADS 

    Google Scholar 

  • Manton, N. & Schwarz, N. in Topological Solitons Ch. 3 (eds Manton, N. & Sutcliffe, P.) 506 (Cambridge Univ. Press, 2004).

  • Nahas, Y. et al. Discovery of steady skyrmionic state in ferroelectric nanocomposites. Nat. Commun. 6, 8542 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Berg, B. & Lüscher, M. Definition and statistical distributions of a topological quantity within the lattice O(3) σ-model. Nucl. Phys. B 190, 412–424 (1981).

    ADS 

    Google Scholar 

  • Kiselev, N. S. Experimental commentary of chiral magnetic bobbers in B20-type FeGe. Nat. Nanotechnol. 13, 451–455 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *