Imaging of isotope diffusion using atomic-scale vibrational spectroscopy


  • Hage, F. S., Radtke, G., Kepaptsoglou, D. M., Lazzeri, M. & Ramasse, Q. M. Single-atom vibrational spectroscopy within the scanning transmission electron microscope. Science 367, 1124–1127 (2020).

    CAS 
    Article 

    Google Scholar 

  • Yan, X. et al. Single-defect phonons imaged by electron microscopy. Nature 589, 65–69 (2021).

    CAS 
    Article 

    Google Scholar 

  • Venkatraman, Ok., Levin, B. D. A., March, Ok., Rez, P. & Crozier, P. A. Vibrational spectroscopy at atomic decision with electron affect scattering. Nat. Phys. 15, 1237–1241 (2019).

    CAS 
    Article 

    Google Scholar 

  • Hachtel, J. A. et al. Identification of site-specific isotopic labels by vibrational spectroscopy within the electron microscope. Science 363, 525–528 (2019).

    CAS 
    Article 

    Google Scholar 

  • Ong, S.-E. et al. Steady isotope labeling by amino acids in cell tradition, SILAC, as a easy and correct method to expression proteomics. Mol. Cell. Proteomics 1, 376–386 (2002).

    CAS 
    Article 

    Google Scholar 

  • Li, X., Cai, W., Colombo, L. & Ruoff, R. S. Evolution of graphene development on Ni and Cu by carbon isotope labeling. Nano Lett. 9, 4268–4272 (2009).

    CAS 
    Article 

    Google Scholar 

  • Li, Q. et al. Progress of adlayer graphene on Cu studied by carbon isotope labeling. Nano Lett. 13, 486–490 (2013).

    CAS 
    Article 

    Google Scholar 

  • Wiederhold, J. G. Metallic steady isotope signatures as tracers in environmental geochemistry. Environ. Sci. Technol. 49, 2606–2624 (2015).

    CAS 
    Article 

    Google Scholar 

  • Krogh, T. E. A low-contamination methodology for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim. Cosmochim. Acta 87, 485–494 (1973).

    Article 

    Google Scholar 

  • Susi, T. et al. Isotope evaluation within the transmission electron microscope. Nat. Commun. 7, 13040 (2016).

    CAS 
    Article 

    Google Scholar 

  • Krivanek, O. L. et al. Vibrational spectroscopy within the electron microscope. Nature 514, 209–212 (2014).

    CAS 
    Article 

    Google Scholar 

  • Senga, R. et al. Place and momentum mapping of vibrations in graphene nanostructures. Nature 573, 247–250 (2019).

    CAS 
    Article 

    Google Scholar 

  • Zhang, H., Lee, G., Fonseca, A. F., Borders, T. L. & Cho, Ok. Isotope impact on the thermal conductivity of graphene. J. Nanomater. 2010, 537657 (2010).

    Google Scholar 

  • Liu, Z. et al. In situ statement of step-edge in-plane development of graphene in a STEM. Nat. Commun. 5, 4055 (2014).

    CAS 
    Article 

    Google Scholar 

  • Garvie, L. A. J., Craven, A. J. & Brydson, R. Use of electron-energy loss near-edge effective construction within the research of minerals. Am. Mineral. 79, 411–425 (1994).

    CAS 

    Google Scholar 

  • Kimoto, Ok., Sekiguchi, T. & Aoyama, T. Chemical shift mapping of Si L and Ok edges utilizing spatially resolved EELS and energy-filtering TEM. J. Electron Microsc. 46, 369–374 (1997).

    CAS 
    Article 

    Google Scholar 

  • Lichtert, S. & Verbeeck, J. Statistical penalties of making use of a PCA noise filter on EELS spectrum photos. Ultramicroscopy 125, 35–42 (2013).

    CAS 
    Article 

    Google Scholar 

  • Gan, Y., Solar, L. & Banhart, F. One- and two-dimensional diffusion of metallic atoms in graphene. Small 4, 587–591 (2008).

    CAS 
    Article 

    Google Scholar 

  • Dienes, G. J. Mechanism for self-diffusion in graphite. J. Appl. Phys. 23, 1194–1200 (1952).

    CAS 
    Article 

    Google Scholar 

  • Banhart, F., Kotakoski, J. & Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 5, 26–41 (2011).

    CAS 
    Article 

    Google Scholar 

  • Konečná, A., Iyikanat, F. & de Abajo, F. J. G. Atomic-scale vibrational mapping and isotope identification with electron beams. ACS Nano 15, 9890–9899 (2021).

    Article 

    Google Scholar 

  • Zan, R., Ramasse, Q. M., Bangert, U. & Novoselov, Ok. S. Graphene reknits its holes. Nano Lett. 12, 3936–3940 (2012).

    CAS 
    Article 

    Google Scholar 

  • Giannozzi, P. et al. Quantum ESPRESSO: a modular and open-source software program mission for quantum simulations of supplies. J. Phys. Condens. Matter 21, 395502 (2009).

    Article 

    Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *