Hage, F. S., Radtke, G., Kepaptsoglou, D. M., Lazzeri, M. & Ramasse, Q. M. Single-atom vibrational spectroscopy within the scanning transmission electron microscope. Science 367, 1124–1127 (2020).
Google Scholar
Yan, X. et al. Single-defect phonons imaged by electron microscopy. Nature 589, 65–69 (2021).
Google Scholar
Venkatraman, Ok., Levin, B. D. A., March, Ok., Rez, P. & Crozier, P. A. Vibrational spectroscopy at atomic decision with electron affect scattering. Nat. Phys. 15, 1237–1241 (2019).
Google Scholar
Hachtel, J. A. et al. Identification of site-specific isotopic labels by vibrational spectroscopy within the electron microscope. Science 363, 525–528 (2019).
Google Scholar
Ong, S.-E. et al. Steady isotope labeling by amino acids in cell tradition, SILAC, as a easy and correct method to expression proteomics. Mol. Cell. Proteomics 1, 376–386 (2002).
Google Scholar
Li, X., Cai, W., Colombo, L. & Ruoff, R. S. Evolution of graphene development on Ni and Cu by carbon isotope labeling. Nano Lett. 9, 4268–4272 (2009).
Google Scholar
Li, Q. et al. Progress of adlayer graphene on Cu studied by carbon isotope labeling. Nano Lett. 13, 486–490 (2013).
Google Scholar
Wiederhold, J. G. Metallic steady isotope signatures as tracers in environmental geochemistry. Environ. Sci. Technol. 49, 2606–2624 (2015).
Google Scholar
Krogh, T. E. A low-contamination methodology for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim. Cosmochim. Acta 87, 485–494 (1973).
Google Scholar
Susi, T. et al. Isotope evaluation within the transmission electron microscope. Nat. Commun. 7, 13040 (2016).
Google Scholar
Krivanek, O. L. et al. Vibrational spectroscopy within the electron microscope. Nature 514, 209–212 (2014).
Google Scholar
Senga, R. et al. Place and momentum mapping of vibrations in graphene nanostructures. Nature 573, 247–250 (2019).
Google Scholar
Zhang, H., Lee, G., Fonseca, A. F., Borders, T. L. & Cho, Ok. Isotope impact on the thermal conductivity of graphene. J. Nanomater. 2010, 537657 (2010).
Liu, Z. et al. In situ statement of step-edge in-plane development of graphene in a STEM. Nat. Commun. 5, 4055 (2014).
Google Scholar
Garvie, L. A. J., Craven, A. J. & Brydson, R. Use of electron-energy loss near-edge effective construction within the research of minerals. Am. Mineral. 79, 411–425 (1994).
Google Scholar
Kimoto, Ok., Sekiguchi, T. & Aoyama, T. Chemical shift mapping of Si L and Ok edges utilizing spatially resolved EELS and energy-filtering TEM. J. Electron Microsc. 46, 369–374 (1997).
Google Scholar
Lichtert, S. & Verbeeck, J. Statistical penalties of making use of a PCA noise filter on EELS spectrum photos. Ultramicroscopy 125, 35–42 (2013).
Google Scholar
Gan, Y., Solar, L. & Banhart, F. One- and two-dimensional diffusion of metallic atoms in graphene. Small 4, 587–591 (2008).
Google Scholar
Dienes, G. J. Mechanism for self-diffusion in graphite. J. Appl. Phys. 23, 1194–1200 (1952).
Google Scholar
Banhart, F., Kotakoski, J. & Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 5, 26–41 (2011).
Google Scholar
Konečná, A., Iyikanat, F. & de Abajo, F. J. G. Atomic-scale vibrational mapping and isotope identification with electron beams. ACS Nano 15, 9890–9899 (2021).
Google Scholar
Zan, R., Ramasse, Q. M., Bangert, U. & Novoselov, Ok. S. Graphene reknits its holes. Nano Lett. 12, 3936–3940 (2012).
Google Scholar
Giannozzi, P. et al. Quantum ESPRESSO: a modular and open-source software program mission for quantum simulations of supplies. J. Phys. Condens. Matter 21, 395502 (2009).
Google Scholar