Progress and prospects in magnetic topological materials


  • Kane, C. L. & Mele, E. J. Quantum spin Corridor impact in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Corridor impact and topological part transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kitaev, A. Y. U. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003). This paper reveals how you can implement topological quantum computing in magnetic superconducting methods.

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar 

  • Pesin, D. & MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater. 11, 409–416 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rajamathi, C. R. et al. Weyl semimetals as hydrogen evolution catalysts. Adv. Mater. 29, 1606202 (2017). This paper represents the primary utility of a Weyl semimetal for catalysis.

    Google Scholar 

  • Xu, Y. et al. Excessive-throughput calculations of magnetic topological supplies. Nature 586, 702–707 (2020). This paper represents the primary high-throughput magnetic topological calculations.

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Elcoro, L. et al. Magnetic topological quantum chemistry. Nat. Commun. 12, 5965 (2021). This paper develops the complete idea of topological insulators and metals in magnetic teams.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Watanabe, H., Po, H. C. & Vishwanath, A. Construction and topology of band buildings within the 1651 magnetic house teams. Sci. Adv. 4, aat8685 (2018).

    ADS 

    Google Scholar 

  • Morali, N. et al. Fermi-arc range on floor terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 365, 1286–1291 (2019). This paper reveals the relevance of the distinct floor potentials imposed by three completely different terminations on the modification of the Fermi-arc contour and Weyl node connectivity.

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Otrokov, M. M. et al. Prediction and statement of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019). This paper predicts and realizes an antiferromagnetic topological insulator in a bulk materials for the primary time.

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Noky, J., Zhang, Y., Gooth, J., Felser, C. & Solar, Y. Big anomalous Corridor and Nernst impact in magnetic cubic Heusler compounds. npj Comput. Mater. 6, 77 (2020). This paper systematically investigates the Berry curvature of all magnetic Heusler compounds.

    ADS 
    CAS 

    Google Scholar 

  • Haldane, F. D. M. Mannequin for a quantum Corridor Impact with out Landau ranges: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988). This paper realizes the primary mannequin of a magnetic topological insulators (Chern insulators).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chang, C.-Z. et al. Experimental statement of the quantum anomalous Corridor impact in a magnetic topological insulator. Science 340, 167–170 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Checkelsky, J. G. et al. Trajectory of the anomalous Corridor impact in the direction of the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014).

    CAS 

    Google Scholar 

  • Deng, Y. et al. Quantum anomalous Corridor impact in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gong, Y. et al. Experimental realization of an intrinsic magnetic topological insulator. Chin. Phys. Lett. 36, 076801 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Chang, C.-Z. & Li, M. Quantum anomalous Corridor impact in time-reversal-symmetry breaking topological insulators. J. Phys. Condens. Matter 28, 123002 (2016).

    ADS 
    PubMed 

    Google Scholar 

  • Hor, Y. S. et al. Growth of ferromagnetism within the doped topological insulator Bi2−xMnxTe3. Phys. Rev. B 81, 195203 (2010).

    ADS 

    Google Scholar 

  • Yu, R. et al. Quantized anomalous Corridor impact in magnetic topological insulators. Science 329, 61–64 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chang, C.-Z. et al. Skinny movies of magnetically doped topological insulator with carrier-independent long-range ferromagnetic order. Adv. Mater. 25, 1065–1070 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mong, R. S. Okay., Essin, A. M. & Moore, J. E. Antiferromagnetic topological insulators. Phys. Rev. B 81, 245209 (2010). This paper describes the primary mannequin of an antiferromagnetic topological insulator.

  • Fang, C., Gilbert, M. J. & Bernevig, B. A. Topological insulators with commensurate antiferromagnetism. Phys. Rev. B 88, 085406 (2013).

    ADS 

    Google Scholar 

  • Bradley, C. & Cracknell, A. The Mathematical Principle of Symmetry in Solids: Illustration Principle for Level Teams and Area Teams (Clarendon, 1972).

  • Otrokov, M. M. et al. Extremely-ordered extensive bandgap supplies for quantized anomalous Corridor and magnetoelectric results. 2D Mater. 4, 025082 (2017).

    Google Scholar 

  • Otrokov, M. M. et al. Distinctive thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 movies. Phys. Rev. Lett. 122, 107202 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, J. et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family supplies. Sci. Adv. 5, aaw5685 (2019).

    ADS 

    Google Scholar 

  • Zhang, D. et al. Topological axion states within the magnetic insulator MnBi2Te4 with the quantized magnetoelectric impact. Phys. Rev. Lett. 122, 206401 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ge, J. et al. Excessive-Chern-number and high-temperature quantum Corridor impact with out Landau ranges. Natl Sci. Rev. 7, 1280–1287 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological area idea of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    ADS 

    Google Scholar 

  • Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electrical multipole insulators. Science 357, 61–66 (2017).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Hughes, T. L., Prodan, E. & Bernevig, B. A. Inversion-symmetric topological insulators. Phys. Rev. B 83, 245132 (2011).

    ADS 

    Google Scholar 

  • Turner, A. M., Zhang, Y., Mong, R. S. Okay. & Vishwanath, A. Quantized response and topology of magnetic insulators with inversion symmetry. Phys. Rev. B 85, 165120 (2012).

    ADS 

    Google Scholar 

  • Zhang, F., Kane, C. L. & Mele, E. J. Floor state magnetization and chiral edge states on topological insulators. Phys. Rev. Lett. 110, 046404 (2013).

    ADS 
    PubMed 

    Google Scholar 

  • Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    ADS 
    PubMed 

    Google Scholar 

  • Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    ADS 

    Google Scholar 

  • Coh, S. & Vanderbilt, D. Canonical magnetic insulators with isotropic magnetoelectric coupling. Phys. Rev. B 88, 121106 (2013).

    ADS 

    Google Scholar 

  • Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).

    ADS 
    PubMed 

    Google Scholar 

  • Schindler, F. et al. Larger-order topological insulators. Sci. Adv. 4, aat0346 (2018).

    ADS 

    Google Scholar 

  • Po, H. C., Vishwanath, A. & Watanabe, H. Symmetry-based indicators of band topology within the 230 house teams. Nat. Commun. 8, 50 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Z., Wieder, B. J., Li, J., Yan, B. & Bernevig, B. A. Larger-order topology, monopole nodal traces, and the origin of huge Fermi arcs in transition metallic dichalcogenides XTe2 (X = Mo, W). Phys. Rev. Lett. 123, 186401 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Turner, A. M., Zhang, Y. & Vishwanath, A. Entanglement and inversion symmetry in topological insulators. Phys. Rev. B 82, 241102 (2010).

    ADS 

    Google Scholar 

  • Wieder, B. J. & Bernevig, B. A. The axion insulator as a pump of fragile topology. Preprint at https://arxiv.org/abs/1810.02373 (2018).

  • Mogi, M. et al. A magnetic heterostructure of topological insulators as a candidate for an axion insulator. Nat. Mater. 16, 516–521 (2017). This paper realizes step one in the direction of the belief of an axion insulator by engineered heterostructures with modulation-doped topological insulator movies.

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xiao, D. et al. Realization of the axion insulator state in quantum anomalous Corridor sandwich heterostructures. Phys. Rev. Lett. 120, 056801 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, S.-Y. et al. Hedgehog spin texture and Berry’s part tuning in a magnetic topological insulator. Nat. Phys. 8, 616–622 (2012).

    CAS 

    Google Scholar 

  • Wang, Z. & Zhang, S.-C. Chiral anomaly, cost density waves, and axion strings from Weyl semimetals. Phys. Rev. B 87, 161107 (2013).

    ADS 

    Google Scholar 

  • Gooth, J. et al. Axionic charge-density wave within the Weyl semimetal (TaSe4)2I. Nature 575, 315–319 (2019). First realization of an axion quasiparticle in a charge-density wave Weyl semimetal.

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Shi, W. et al. A charge-density-wave topological semimetal. Nat. Phys. 17, 381–387 (2021).

    CAS 

    Google Scholar 

  • Ahn, J. & Yang, B.-J. Symmetry illustration method to topological invariants in C2zT-symmetric methods. Phys. Rev. B 99, 235125 (2019).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • Varnava, N., Souza, I. & Vanderbilt, D. Axion coupling within the hybrid Wannier illustration. Phys. Rev. B 101, 155130 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Shiozaki, Okay., Sato, M. & Gomi, Okay. Topological crystalline supplies: basic formulation, module construction, and wallpaper teams. Phys. Rev. B 95, 235425 (2017).

    ADS 

    Google Scholar 

  • Fang, C. & Fu, L. New courses of three-dimensional topological crystalline insulators: nonsymmorphic and magnetic. Phys. Rev. B 91, 161105 (2015). This paper realizes the primary fashions of rotational anomaly topological insulators.

    ADS 

    Google Scholar 

  • Zhang, R.-X., Wu, F. & Das Sarma, S. Möbius insulator and higher-order topology in MnBi2nTe3n+1. Phys. Rev. Lett. 124, 136407 (2020). This paper predicts a number of topological phases within the MnBiTe household.

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Aliev, Z. S. et al. Novel ternary layered manganese bismuth tellurides of the MnTe-Bi2Te3 system: synthesis and crystal construction. J. Alloys Compd. 789, 443–450 (2019).

    CAS 

    Google Scholar 

  • Klimovskikh, I. I. et al. Tunable 3D/2D magnetism within the (MnBi2Te4)(Bi2Te3)m topological insulator household. npj Quantum Mater. 12, 20 (2019).

    Google Scholar 

  • Wang, Z., Alexandradinata, A., Cava, R. J. & Bernevig, B. A. Hourglass fermions. Nature 532, 189–194 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wieder, B. J. et al. Wallpaper fermions and the nonsymmorphic Dirac insulator. Science 361, 246–251 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ma, J. et al. Experimental proof of hourglass fermion within the candidate nonsymmorphic topological insulator KHgSb. Sci. Adv. 3, e1602415 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang, S. et al. A niche-protected zero-Corridor impact state within the quantum restrict of the non-symmorphic metallic KHgSb. Nat. Mater. 18, 443–447 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hu, C. et al. Realization of an intrinsic ferromagnetic topological state in MnBi8Te13. Sci. Adv. 6, aba4275 (2020).

    ADS 

    Google Scholar 

  • Fang, C. & Fu, L. New courses of topological crystalline insulators having floor rotation anomaly. Sci. Adv. 5, aat2374 (2019).

    ADS 

    Google Scholar 

  • Wei, P. et al. Alternate-coupling-induced symmetry breaking in topological insulators. Phys. Rev. Lett. 110, 186807 (2013).

    ADS 
    PubMed 

    Google Scholar 

  • Katmis, F. et al. A high-temperature ferromagnetic topological insulating part by proximity coupling. Nature 533, 513–516 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lang, M. et al. Proximity induced high-temperature magnetic order in topological insulator – ferrimagnetic insulator heterostructure. Nano Lett. 14, 3459–3465 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tang, S. et al. Quantum spin Corridor state in monolayer 1T′-WTe2. Nat. Phys. 13, 683–687 (2017).

    CAS 

    Google Scholar 

  • Hirahara, T. et al. Giant-gap magnetic topological heterostructure shaped by subsurface incorporation of a ferromagnetic layer. Nano Lett. 17, 3493–3500 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hirahara, T. et al. Fabrication of a novel magnetic topological heterostructure and temperature evolution of its huge Dirac cone. Nat. Commun. 11, 4821 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krieger, J. A. et al. Spectroscopic perspective on the interaction between digital and magnetic properties of magnetically doped topological insulators. Phys. Rev. B 96, 184402 (2017).

    ADS 

    Google Scholar 

  • Alegria, L. D. et al. Giant anomalous Corridor impact in ferromagnetic insulator-topological insulator heterostructures. Appl. Phys. Lett. 105, 053512 (2014).

    ADS 

    Google Scholar 

  • Wolf, S. et al. Spintronics: a spin-based electronics imaginative and prescient for the long run. Science 294, 1488–1495 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tokura, Y., Yasuda, Okay. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019). This paper opinions the essential ideas of magnetic topological insulators, their experimental realization and the verification of their emergent properties.

    Google Scholar 

  • Chang, C.-Z. et al. Excessive-precision realization of strong quantum anomalous Corridor state in a tough ferromagnetic topological insulator. Nat. Mater. 14, 473–477 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, Y. L. et al. Huge Dirac fermion on the floor of a magnetically doped topological insulator. Science 329, 659–662 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lachman, E. O. et al. Visualization of superparamagnetic dynamics in magnetic topological insulators. Sci. Adv. 1, e1500740 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beidenkopf, H. et al. Spatial fluctuations of helical Dirac fermions on the floor of topological insulators. Nat. Phys. 7, 939–943 (2011).

    CAS 

    Google Scholar 

  • Lee, I. et al. Imaging Dirac-mass dysfunction from magnetic dopant atoms within the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2−xTe3. Proc. Natl Acad. Sci. 112, 1316–1321 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rienks, E. D. L. et al. Giant magnetic hole on the Dirac level in Bi2Te3/MnBi2Te4 heterostructures. Nature 576, 423–428 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, S. H. et al. Spin scattering and noncollinear spin structure-induced intrinsic anomalous Corridor impact in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. Res. 1, 012011 (2019).

    CAS 

    Google Scholar 

  • Li, H. et al. Dirac floor states in intrinsic magnetic topological insulators EuSn2As2 and MnBi2nTe3n+1. Phys. Rev. X 9, 041039 (2019).

    CAS 

    Google Scholar 

  • Yan, J.-Q. et al. Crystal progress and magnetic construction of MnBi2Te4. Phys. Rev. Mater. 3, 064202 (2019).

    CAS 

    Google Scholar 

  • Yuan, Y. et al. Digital states and magnetic response of MnBi2Te4 by scanning tunneling microscopy and spectroscopy. Nano Lett. 20, 3271–3277 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, C. et al. Sturdy axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 522–527 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, X. & Ni, J. Layer-dependent intrinsic anomalous Corridor impact in Fe3GeTe2. Phys. Rev. B 100, 085403 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Xu, J., Phelan, W. A. & Chien, C.-L. Giant anomalous Nernst impact in a van der Waals ferromagnet Fe3GeTe2. Nano Lett. 19, 8250–8254 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, Okay. et al. Giant anomalous Corridor present induced by topological nodal traces in a ferromagnetic van der Waals semimetal. Nat. Mater. 17, 794–799 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, L.-L. et al. Single pair of Weyl fermions within the half-metallic semimetal EuCd2As2. Phys. Rev. B 99, 245147 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Hua, G. et al. Dirac semimetal in type-IV magnetic house teams. Phys. Rev. B 98, 201116 (2018).

    ADS 

    Google Scholar 

  • Ma, J. et al. Emergence of nontrivial low-energy Dirac fermions in antiferromagnetic EuCd2As2. Adv. Mater. 32, 1907565 (2020).

    CAS 

    Google Scholar 

  • Xu, Y., Track, Z., Wang, Z., Weng, H. & Dai, X. Larger-order topology of the axion insulator EuIn2As2. Phys. Rev. Lett. 122, 256402 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gui, X. et al. A brand new magnetic topological quantum materials candidate by design. ACS Cent. Sci. 5, 900–910 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sato, T. et al. Signature of band inversion within the antiferromagnetic part of axion insulator candidate EuIn2As2. Phys. Rev. Res. 2, 033342 (2020).

    CAS 

    Google Scholar 

  • Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Corridor impact. Rev. Mod. Phys. 82, 1539–1592 (2010).

    ADS 

    Google Scholar 

  • Berry, M. V. Quantal part elements accompanying adiabatic modifications. Proc. R. Soc. Lond. A 392, 45–57 (1984).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • Murakami, S. Part transition between the quantum spin Corridor and insulator phases in 3D: emergence of a topological gapless part. New J. Phys. 9, 356 (2007).

    ADS 

    Google Scholar 

  • Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc floor states within the digital construction of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    ADS 

    Google Scholar 

  • Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, Okay.-Y., Lu, Y.-M. & Ran, Y. Quantum Corridor results in a Weyl semimetal: potential utility in pyrochlore iridates. Phys. Rev. B 84, 075129 (2011).

    ADS 

    Google Scholar 

  • Li, X. et al. Anomalous Nernst and Righi–Leduc rffects in Mn3Sn: Berry curvature and entropy move. Phys. Rev. Lett. 119, 056601 (2017).

    ADS 
    PubMed 

    Google Scholar 

  • Sharma, G., Goswami, P. & Tewari, S. Nernst and magnetothermal conductivity in a lattice mannequin of Weyl fermions. Phys. Rev. B 93, 035116 (2016).

    ADS 

    Google Scholar 

  • Sakai, A. et al. Big anomalous Nernst impact and quantum-critical scaling in a ferromagnetic semimetal. Nat. Phys. 14, 1119–1124 (2018).

    CAS 

    Google Scholar 

  • Noky, J., Gayles, J., Felser, C. & Solar, Y. Sturdy anomalous Nernst impact in collinear magnetic Weyl semimetals with out web magnetic moments. Phys. Rev. B 97, 220405 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Fang, C., Gilbert, M. J., Dai, X. & Bernevig, B. A. Multi-Weyl topological semimetals stabilized by level group symmetry. Phys. Rev. Lett. 108, 266802 (2012).

    ADS 
    PubMed 

    Google Scholar 

  • Solin, N. I. & Chebotaev, N. M. Magnetoresistance and Corridor impact of the magnetic semiconductor HgCr2Se4 in robust magnetic fields. Phys. Stable State 39, 754–758 (1997).

    ADS 

    Google Scholar 

  • Kübler, J. & Felser, C. Non-collinear antiferromagnets and the anomalous Corridor impact. Europhys. Lett. 108, 67001 (2014).

    ADS 

    Google Scholar 

  • Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Corridor impact arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    ADS 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Sturdy anisotropic anomalous Corridor impact and spin Corridor impact within the chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh, and Pt). Phys. Rev. B 95, 075128 (2017).

    ADS 

    Google Scholar 

  • Yang, H. et al. Topological Weyl semimetals within the chiral antiferromagnetic supplies Mn3Ge and Mn3Sn. New J. Phys. 19, 015008 (2017).

    ADS 

    Google Scholar 

  • Tang, P., Zhou, Q., Xu, G. & Zhang, S.-C. Dirac fermions in an antiferromagnetic semimetal. Nat. Phys. 12, 1100–1104 (2016).

    CAS 

    Google Scholar 

  • Belopolski, I. et al. Discovery of topological Weyl fermion traces and drumhead floor states in a room temperature magnet. Science 365, 1278–1281 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nie, S., Weng, H. & Prinz, F. B. Topological nodal-line semimetals in ferromagnetic rare-earth-metal monohalides. Phys. Rev. B 99, 035125 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Bradlyn, B. et al. Past Dirac and Weyl fermions: unconventional quasiparticles in standard crystals. Science 353, aaf5037 (2016).

    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 

  • Cano, J., Bradlyn, B. & Vergniory, M. G. Multifold nodal factors in magnetic supplies. APL Mater. 7, 101125 (2019).

    ADS 

    Google Scholar 

  • Wieder, B. J., Kim, Y., Rappe, A. M. & Kane, C. L. Double Dirac semimetals in three dimensions. Phys. Rev. Lett. 116, 186402 (2016).

    ADS 
    PubMed 

    Google Scholar 

  • Wieder, B. J. et al. Sturdy and fragile topological Dirac semimetals with higher-order Fermi arcs. Nat. Commun. 11, 627 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, M. & Hughes, T. L. Topological quadrupolar semimetals. Phys. Rev. B 98, 241103 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Liu, E. et al. Big anomalous Corridor impact in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, D. F. et al. Magnetic Weyl semimetal part in a Kagomé crystal. Science 365, 1282–1285 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Guin, S. N. et al. Zero-field Nernst impact in a ferromagnetic kagome-lattice Weyl-semimetal Co3Sn2S2. Adv. Mater. 31, 1806622 (2019).

    MathSciNet 

    Google Scholar 

  • Howard, S. et al. Proof for one-dimensional chiral edge states in a magnetic Weyl semimetal Co3Sn2S2. Nat. Commun. 12, 4269 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muechler, L. et al. Rising chiral edge states from the confinement of a magnetic Weyl semimetal in Co3Sn2S2. Phys. Rev. B 101, 115106 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Ma, D.-S. et al. Spin-orbit-induced topological flat bands in line and cut up graphs of bipartite lattices. Phys. Rev. Lett. 125, 266403 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, Y. et al. Digital correlations and flattened band in magnetic Weyl semimetal Co3Sn2S2. Nat. Commun. 11, 3985 (2019).

    ADS 

    Google Scholar 

  • Yin, J. X. et al. Adverse flat band magnetism in a spin–orbit-coupled correlated kagome magnet. Nat. Phys. 15, 443–448 (2019).

    CAS 

    Google Scholar 

  • Li, G. et al. Floor states in bulk single crystal of topological semimetal Co3Sn2S2 towards water oxidation. Sci. Adv. 5, eaaw9867 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Q. et al. Giant intrinsic anomalous Corridor impact in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions. Nat. Commun. 9, 3681 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nie, S., Xu, G., Prinz, F. B. & Zhang, S.-C. Topological semimetal in honeycomb lattice LnSI. Proc. Natl Acad. Sci. 114, 10596–10600 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kang, M. et al. Dirac fermions and flat bands within the superb kagome metallic FeSn. Nat. Mater. 19, 163–169 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ye, L. et al. Huge Dirac fermions in a ferromagnetic kagome metallic. Nature 555, 638–642 (2018). The paper discusses floor and bulk Dirac fermions in addition to flat bands within the antiferromagnetic kagome metallic FeSn.

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nakatsuji, S., Kiyohara, N. & Higo, T. Giant anomalous Corridor impact in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015). First report of a big anomalous Corridor impact in an antiferromagnet Mn3Sn with vanishingly small magnetization.

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nayak, A. Okay. et al. Giant anomalous Corridor impact pushed by a nonvanishing Berry curvature within the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Z. et al. Orbital-selective Dirac fermions and intensely flat bands in annoyed kagome-lattice metallic CoSn. Nat. Commun. 11, 4002 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yin, J.-X. et al. Quantum-limit Chern topological magnetism in TbMn6Sn6. Nature 583, 533–536 (2020). A topological kagome magnet with robust out-of-plane magnetization realized in TbMn6Sn6 and recognized by scanning tunnelling microscopy.

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Asaba, T. et al. Anomalous Corridor impact within the kagome ferrimagnet GdMn6Sn6. Phys. Rev. B 101, 174415 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Ma, W. et al. Uncommon earth engineering in RMn6Sn6 (R = Gd−Tm, Lu) topological kagome magnets. Phys. Rev. Lett. 126, 246602 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yin, J.-X. et al. Big and anisotropic spin–orbit tunability in a strongly correlated kagome magnet. Nature 562, 91–95 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Z. et al. Time-reversal-breaking Weyl fermions in magnetic Heusler alloys. Phys. Rev. Lett. 117, 236401 (2016). This paper studies the primary prediction of ferromagnetic Weyl semimetal.

    ADS 
    PubMed 

    Google Scholar 

  • Kübler, J. & Felser, C. Weyl factors within the ferromagnetic Heusler compound Co2MnAl. Europhys. Lett. 114, 47005 (2016).

    ADS 

    Google Scholar 

  • Graf, T., Felser, C. & Parkin, S. S. P. Easy guidelines for the understanding of Heusler compounds. Prog. Stable State Chem. 39, 1–50 (2011). This text summarizes the wide selection of properties within the household of Heusler compounds.

    CAS 

    Google Scholar 

  • Li, P. et al. Big room temperature anomalous Corridor impact and tunable topology in a ferromagnetic topological semimetal Co2MnAl. Nat. Commun. 11, 3476 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Manna, Okay., Solar, Y., Muechler, L., Kübler, J. & Felser, C. Heusler, Weyl and Berry. Nat. Rev. Mater. 3, 244–256 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Guin, S. N. et al. Anomalous Nernst impact past the magnetization scaling relation within the ferromagnetic Heusler compound Co2MnGa. NPG Asia Mater. 11, 16 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Manna, Okay. et al. From colossal to zero: controlling the anomalous Corridor impact in magnetic Heusler compounds through Berry curvature design. Phys. Rev. X 8, 041045 (2018).

    CAS 

    Google Scholar 

  • Sakai, A. et al. Iron-based binary ferromagnets for transverse thermoelectric conversion. Nature 581, 53–57 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hirschberger, M. et al. The chiral anomaly and thermopower of Weyl fermions within the half-Heusler GdPtBi. Nat. Mater. 15, 1161–1165 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Liang, S. et al. Experimental assessments of the chiral anomaly magnetoresistance within the Dirac–Weyl semimetals Na3Bi and GdPtBi. Phys. Rev. X 8, 031002 (2018).

    CAS 

    Google Scholar 

  • Shekhar, C. et al. Anomalous Corridor impact in Weyl semimetal half-Heusler compounds RPtBi (R = Gd and Nd). Proc. Natl Acad. Sci. USA 115, 9140–9144 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumar, N., Guin, S. N., Felser, C. & Shekhar, C. Planar Corridor impact within the Weyl semimetal GdPtBi. Phys. Rev. B 98, 041103 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Schindler, C. et al. Anisotropic electrical and thermal magnetotransport within the magnetic semimetal GdPtBi. Phys. Rev. B 101, 125119 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Yu, J., Yan, B. & Liu, C.-X. Mannequin Hamiltonian and time reversal breaking topological phases of antiferromagnetic half-Heusler supplies. Phys. Rev. B 95, 235158 (2017).

    ADS 

    Google Scholar 

  • Kuroda, Okay. et al. Proof for magnetic Weyl fermions in a correlated metallic. Nat. Mater. 16, 1090–1095 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ikhlas, M. et al. Giant anomalous Nernst impact at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

    CAS 

    Google Scholar 

  • Higo, T. et al. Giant magneto-optical Kerr impact and imaging of magnetic octupole domains in an antiferromagnetic metallic. Nat. Photonics 12, 73–78 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).

    Google Scholar 

  • Suzuki, T. et al. Singular angular magnetoresistance in a magnetic nodal semimetal. Science 365, 377–381 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Puphal, P. et al. Topological magnetic part within the candidate Weyl semimetal CeAlGe. Phys. Rev. Lett. 124, 017202 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sanchez, D. S. et al. Commentary of Weyl fermions in a magnetic non-centrosymmetric crystal. Nat. Commun. 11, 3356 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, S.-Y. et al. Discovery of Lorentz-violating sort II Weyl fermions in LaAlGe. Sci. Adv. 3, e1603266 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, H., Ritter, C. & Komarek, A. C. Direct dedication of the spin construction of Nd2Ir2O7 by way of neutron diffraction. Phys. Rev. B 94, 161102 (2016).

    ADS 

    Google Scholar 

  • Goswami, P., Roy, B. & Das Sarma, S. Competing orders and topology within the world part diagram of pyrochlore iridates. Phys. Rev. B 95, 085120 (2017).

    ADS 

    Google Scholar 

  • Ueda, Okay. et al. Magnetic-field induced a number of topological phases in pyrochlore iridates with Mott criticality. Nat. Commun. 8, 15515 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Savary, L., Moon, E. G. & Balents, L. New sort of quantum criticality within the pyrochlore iridates. Phys. Rev. X 4, 041027 (2014).

    CAS 

    Google Scholar 

  • Matsuhira, Okay. et al. Metallic–insulator transition in pyrochlore iridates Ln2Ir2O7 (Ln = Nd, Sm, and Eu). J. Phys. Soc. Jpn. 76, 043706 (2007).

    ADS 

    Google Scholar 

  • Nakayama, M. et al. Slater to Mott crossover within the metallic to insulator transition of Nd2Ir2O7. Phys. Rev. Lett. 117, 056403 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tian, Z. et al. Subject-induced quantum metallic–insulator transition within the pyrochlore iridate Nd2Ir2O7. Nat. Phys. 12, 134–138 (2016).

    CAS 

    Google Scholar 

  • Ma, E. Y. et al. Cellular metallic area partitions in an all-in-all-out magnetic insulator. Science 350, 538–541 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yamaji, Y. & Imada, M. Metallic interface rising at magnetic area wall of antiferromagnetic insulator: destiny of extinct Weyl electrons. Phys. Rev. X 4, 021035 (2014).

    CAS 

    Google Scholar 

  • Li, J. et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family supplies. Sci. Adv. 5, aaw5685 (2019).

    ADS 

    Google Scholar 

  • Track, Z., Zhang, T., Fang, Z. & Fang, C. Quantitative mappings between symmetry and topology in solids. Nat. Commun. 9, 3530 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Track, Z.-D., Elcoro, L., Xu, Y.-F., Regnault, N. & Bernevig, B. A. Fragile phases as affine monoids: classification and materials examples. Phys. Rev. X 10, 031001 (2020).

    CAS 

    Google Scholar 

  • Track, Z.-D., Elcoro, L. & Bernevig, B. A. Twisted bulk-boundary correspondence of fragile topology. Science 367, 794–797 (2020).

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar 

  • Suzuki, T. et al. Giant anomalous Corridor impact in a half-Heusler antiferromagnet. Nat. Phys. 12, 1119–1123 (2016).

    CAS 

    Google Scholar 

  • Vilanova Vidal, E., Stryganyuk, G., Schneider, H., Felser, C. & Jakob, G. Exploring Co2MnAl Heusler compound for anomalous Corridor impact sensors. Appl. Phys. Lett. 99, 132509 (2011).

    ADS 

    Google Scholar 

  • Wuttke, C. et al. Berry curvature unravelled by the anomalous Nernst impact in Mn3Ge. Phys. Rev. B 100, 085111 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Vergniory, M. G. et al. Graph idea information for topological quantum chemistry. Phys. Rev. E 96, 023310 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bradlyn, B., Wang, Z., Cano, J. & Bernevig, B. A. Disconnected elementary band representations, fragile topology, and Wilson loops as topological indices: an instance on the triangular lattice. Phys. Rev. B 99, 045140 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Kruthoff, J., de Boer, J., van Wezel, J., Kane, C. L. & Slager, R.-J. Topological classification of crystalline insulators via band construction combinatorics. Phys. Rev. X 7, 041069 (2017).

    Google Scholar 

  • Khalaf, E., Po, H. C., Vishwanath, A. & Watanabe, H. Symmetry indicators and anomalous floor states of topological crystalline insulators. Phys. Rev. X 8, 031070 (2018).

    CAS 

    Google Scholar 

  • Kenzelmann, M. et al. Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3. Phys. Rev. Lett. 95, 087206 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gallego, S. V. et al. MAGNDATA: in the direction of a database of magnetic buildings. I. The commensurate case. J. Appl. Crystallogr. 49, 1750–1776 (2016).

    CAS 

    Google Scholar 

  • Belopolski, I. et al. Discovery of topological Weyl fermion traces and drumhead floor states in a room temperature magnet. Science 365, 1278–1281 (2019). That is the primary proof of a ferromagnetic nodal line half metallic with floor states that take the type of drumheads through ARPES in Co2MnGa.

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *