Waldron, Okay. J., Rutherford, J. C., Ford, D. & Robinson, N. J. Metalloproteins and metallic sensing. Nature 460, 823–830 (2009).
ADS
CAS
PubMed
Google Scholar
Grey, H. B., Stiefel, E. I., Valentine, J. S. & Bertini, I. Organic Inorganic Chemistry: Construction and Reactivity (College Science Books, 2007).
Waldron, Okay. J. & Robinson, N. J. How do bacterial cells make sure that metalloproteins get the proper metallic? Nat. Rev. Microbiol. 7, 25–35 (2009).
CAS
PubMed
Google Scholar
Dudev, T. & Lim, C. Competitors amongst metallic ions for protein binding websites: determinants of metallic ion selectivity in proteins. Chem. Rev. 114, 538–556 (2014).
CAS
PubMed
Google Scholar
Frausto da Silva, J. J. R. & Williams, R. J. P. The Organic Chemistry of the Parts (Oxford College Press, 2001).
Kisgeropoulos, E. C. et al. Key structural motifs steadiness metallic binding and oxidative reactivity in a heterobimetallic Mn/Fe protein. J. Am. Chem. Soc. 142, 5338–5354 (2020).
CAS
PubMed
PubMed Central
Google Scholar
Grāve, Okay., Griese, J. J., Berggren, G., Bennett, M. D. & Högbom, M. The Bacillus anthracis class Ib ribonucleotide reductase subunit NrdF intrinsically selects manganese over iron. J. Biol. Inorg. Chem. 25, 571–582 (2020).
PubMed
PubMed Central
Google Scholar
Reyes-Caballero, H., Campanello, G. C. & Giedroc, D. P. Metalloregulatory proteins: metallic selectivity and allosteric switching. Biophys. Chem. 156, 103–114 (2011).
CAS
PubMed
Google Scholar
O’Halloran, T. V. & Culotta, V. C. Metallochaperones, an intracellular shuttle service for metallic ions. J. Biol. Chem. 275, 25057–25060 (2000).
PubMed
Google Scholar
Tottey, S. et al. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding. Nature 455, 1138–1142 (2008).
ADS
CAS
PubMed
Google Scholar
Lombardi, A., Pirro, F., Maglio, O., Chino, M. & DeGrado, W. F. De novo design of four-helix bundle metalloproteins: one scaffold, numerous reactivities. Acc. Chem. Res. 52, 1148–1159 (2019).
CAS
PubMed
PubMed Central
Google Scholar
Lu, Y., Yeung, N., Sieracki, N. & Marshall, N. M. Design of useful metalloproteins. Nature 460, 855–862 (2009).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Yu, F. et al. Protein design: towards useful metalloenzymes. Chem. Rev. 114, 3495–3578 (2014).
CAS
PubMed
PubMed Central
Google Scholar
Schwizer, F. et al. Synthetic metalloenzymes: response scope and optimization methods. Chem. Rev. 118, 142–231 (2018).
CAS
PubMed
Google Scholar
Churchfield, L. A. & Tezcan, F. A. Design and development of useful supramolecular metalloprotein assemblies. Acc. Chem. Res. 52, 345–355 (2019).
CAS
PubMed
Google Scholar
Faiella, M. et al. A synthetic di-iron oxo-protein with phenol oxidase exercise. Nat. Chem. Biol. 5, 882–884 (2009).
CAS
PubMed
Google Scholar
Zastrow, M. L., Peacock, F. A., Stuckey, J. A. & Pecoraro, V. L. Hydrolytic catalysis and structural stabilization in a designed metalloprotein. Nat. Chem. 4, 118–123 (2012).
CAS
Google Scholar
Studer, S. et al. Evolution of a extremely lively and enantiospecific metalloenzyme from quick peptides. Science 362, 1285–1288 (2018).
ADS
CAS
PubMed
Google Scholar
Khare, S. D. et al. Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis. Nat. Chem. Biol. 8, 294–300 (2012).
CAS
PubMed
PubMed Central
Google Scholar
Yeung, N. et al. Rational design of a structural and useful nitric oxide reductase. Nature 462, 1079–1082 (2009).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Music, W. J. & Tezcan, F. A. A designed supramolecular protein meeting with in vivo enzymatic exercise. Science 346, 1525–1528 (2014).
ADS
CAS
PubMed
Google Scholar
Churchfield, L. A., Medina-Morales, A., Brodin, J. D., Perez, A. & Tezcan, F. A. De novo design of an allosteric metalloprotein meeting with strained disulfide bonds. J. Am. Chem. Soc. 138, 13163–13166 (2016).
CAS
PubMed
PubMed Central
Google Scholar
Zhou, L. et al. A protein engineered to bind uranyl selectively and with femtomolar affinity. Nat. Chem. 6, 236–241 (2014).
CAS
PubMed
Google Scholar
Wegner, S. V., Boyaci, H., Chen, H., Jensen, M. P. & He, C. Engineering a uranyl-specific binding protein from NikR. Angew. Chem. Int. Ed. Engl. 48, 2339–2341 (2009).
CAS
PubMed
Google Scholar
Brodin, J. D. et al. Evolution of metallic selectivity in templated protein interfaces. J. Am. Chem. Soc. 132, 8610–8617 (2010).
CAS
PubMed
PubMed Central
Google Scholar
Guffy, S. L., Der, B. S. & Kuhlman, B. Probing the minimal determinants of zinc binding with computational protein design. Protein Eng. Des. Sel. 29, 327–338 (2016).
CAS
PubMed
PubMed Central
Google Scholar
Akcapinar, G. B. & Sezerman, O. U. Computational approaches for de novo design and redesign of metal-binding websites on proteins. Biosci. Rep. 37, BSR20160179 (2017).
CAS
PubMed
PubMed Central
Google Scholar
Byrd, J. & Winge, D. R. Cooperative cluster formation in metallothionein. Arch. Biochem. Biophys. 250, 233–237 (1986).
CAS
PubMed
Google Scholar
Halling, D. B., Liebeskind, B. J., Corridor, A. W. & Aldrich, R. W. Conserved properties of particular person Ca2+-binding websites in calmodulin. Proc. Natl Acad. Sci. USA 113, E1216–E1225 (2016).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Zygiel, E. M. & Nolan, E. M. Transition metallic sequestration by the host-defense protein calprotectin. Annu. Rev. Biochem. 87, 621–643 (2018).
CAS
PubMed
PubMed Central
Google Scholar
Rittle, J., Subject, M. J., Inexperienced, M. T. & Tezcan, F. A. An environment friendly, step-economical technique for the design of useful metalloproteins. Nat. Chem. 11, 434–441 (2019).
CAS
PubMed
PubMed Central
Google Scholar
Faraone-Mennella, J., Tezcan, F. A., Grey, H. B. & Winkler, J. R. Stability and folding kinetics of structurally characterised cytochrome c–b562. Biochemistry 45, 10504–10511 (2006).
CAS
PubMed
Google Scholar
Choi, T. S., Lee, H. J., Han, J. Y., Lim, M. H. & Kim, H. I. Molecular insights into human serum albumin as a receptor of amyloid-β within the extracellular area. J. Am. Chem. Soc. 139, 15437–15445 (2017).
CAS
PubMed
Google Scholar
Burgot, J.-L. Ionic Equilibria in Analytical Chemistry (Springer, 2012).
Osman, D. et al. Bacterial sensors outline intracellular free energies for proper enzyme metalation. Nat. Chem. Biol. 15, 241–249 (2019).
CAS
PubMed
PubMed Central
Google Scholar
Younger, T. R. et al. Calculating metalation in cells reveals CobW acquires CoII for vitamin B12 biosynthesis whereas associated proteins favor ZnII. Nat. Commun. 12, 1195 (2021).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Jeschek, M. et al. Directed evolution of synthetic metalloenzymes for in vivo metathesis. Nature 537, 661–665 (2016).
ADS
CAS
PubMed
Google Scholar
Thompson, A. N. et al. Mechanism of potassium-channel selectivity revealed by Na+ and Li+ binding websites inside the KcsA pore. Nat. Struct. Mol. Biol. 16, 1317–1324 (2009).
CAS
PubMed
PubMed Central
Google Scholar
Capdevila, D. A., Braymer, J. J., Edmonds, Okay. A., Wu, H. & Giedroc, D. P. Entropy redistribution controls allostery in a metalloregulatory protein. Proc. Natl Acad. Sci. USA 114, 4424–4429 (2017).
CAS
PubMed
PubMed Central
Google Scholar
Tokuriki, N. & Tawfik, D. S. Protein dynamism and evolvability. Science 324, 203–207 (2009).
ADS
CAS
PubMed
Google Scholar
Motlagh, H. N., Wrabl, J. O., Li, J. & Hilser, V. J. The ensemble nature of allostery. Nature 508, 331–339 (2014).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Papaleo, E. et al. The function of protein loops and linkers in conformational dynamics and allostery. Chem. Rev. 116, 6391–6423 (2016).
CAS
PubMed
Google Scholar
Arslan, E., Schulz, H., Zufferey, R., Künzler, P. & Thöny-Meyer, L. Overproduction of the Bradyrhizobium japonicum c-type cytochrome subunits of the cbb3 oxidase in Escherichia coli. Biochem. Biophys. Res. Commun. 251, 744–747 (1998).
CAS
PubMed
Google Scholar
Bailey, J. B., Subramanian, R. H., Churchfield, L. A. & Tezcan, F. A. in Peptide, Protein and Enzyme Design: Strategies in Enzymology Vol. 580 (ed. Pecoraro, V. L.) 223–250 (Tutorial Press, 2016).
Martel, A., Liu, P., Weiss, T. M., Niebuhr, M. & Tsuruta, H. An built-in high-throughput information acquisition system for organic answer X-ray scattering research. J. Synchrotron Radiat. 19, 431–434 (2012).
CAS
PubMed
PubMed Central
Google Scholar
Manalastas-Cantos, Okay. et al. ATSAS 3.0: expanded performance and new instruments for small-angle scattering information evaluation. J. Appl. Crystallogr. 54, 343–355 (2021).
CAS
PubMed
PubMed Central
Google Scholar
Svergun, D., Barberato, C. & Koch, M. H. J. CRYSOL—a program to judge X-ray answer scattering of organic macromolecules from atomic coordinates. J. Appl. Crystallogr. 28, 768–773 (1995).
CAS
Google Scholar
Collaborative Computational Venture. The CCP4 suite: packages for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).
Google Scholar
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, Okay. Options and improvement of Coot. Acta Crystallogr. D 66, 486–501 (2010).
CAS
PubMed
PubMed Central
Google Scholar
Adams, P. D. et al. PHENIX: a complete Python-based system for macromolecular construction answer. Acta Crystallogr. D 66, 213–221 (2010).
CAS
PubMed
PubMed Central
Google Scholar
The PyMOL Molecular Graphics System v.1.8 (Schrödinger, 2015).
Schuck, P. Dimension-distribution evaluation of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Manoil, C. & Beckwith, J. A genetic strategy to analyzing membrane protein topology. Science 233, 1403–1408 (1986).
ADS
CAS
PubMed
Google Scholar
Dapprich, S., Komáromi, I., Byun, Okay. S., Morokuma, Okay. & Frisch, M. J. A brand new ONIOM implementation in Gaussian98. Half I. The calculation of energies, gradients, vibrational frequencies and electrical subject derivatives. J. Mol. Struct. THEOCHEM 461–462, 1–21 (1999).
Google Scholar
Vreven, T., Morokuma, Okay., Farkas, Ö., Schlegel, H. B. & Frisch, M. J. Geometry optimization with QM/MM, ONIOM, and different mixed strategies. I. Microiterations and constraints. J. Comput. Chem. 24, 760–769 (2003).
CAS
PubMed
Google Scholar
Tao, P. et al. Matrix metalloproteinase 2 inhibition: mixed quantum mechanics and molecular mechanics research of the inhibition mechanism of (4-phenoxyphenylsulfonyl)methylthiirane and its oxirane analogue. Biochemistry 48, 9839–9847 (2009).
CAS
PubMed
Google Scholar
Becke, A. D. Density‐useful thermochemistry. III. The function of tangible change. J. Chem. Phys. 98, 5648–5652 (1993).
ADS
CAS
Google Scholar
Lee, C., Yang, W. & Parr, R. G. Improvement of the Colle–Salvetti correlation-energy system right into a useful of the electron density. Phys. Rev. B 37, 785–789 (1988).
ADS
CAS
Google Scholar
Hariharan, P. C. & Pople, J. A. The impact of d-functions on molecular orbital energies for hydrocarbons. Chem. Phys. Lett. 16, 217–219 (1972).
ADS
CAS
Google Scholar
Rassolov, V. A., Pople, J. A., Ratner, M. A. & Windus, T. L. 6-31G* foundation set for atoms Okay by way of Zn. J. Chem. Phys. 109, 1223–1229 (1998).
ADS
CAS
Google Scholar
Rassolov, V. A., Ratner, M. A., Pople, J. A., Redfern, P. C. & Curtiss, L. A. 6-31G* foundation set for third-row atoms. J. Comput. Chem. 22, 976–984 (2001).
CAS
Google Scholar
Freindorf, M., Shao, Y., Furlani, T. R. & Kong, J. Lennard–Jones parameters for the mixed QM/MM technique utilizing the B3LYP/6-31G*/AMBER potential. J. Comput. Chem. 26, 1270–1278 (2005).
CAS
PubMed
Google Scholar
Case, D. A. et al. The Amber biomolecular simulation packages. J. Comput. Chem. 26, 1668–1688 (2005).
CAS
PubMed
PubMed Central
Google Scholar
Bakowies, D. & Thiel, W. Hybrid fashions for mixed quantum mechanical and molecular mechanical approaches. J. Phys. Chem. 100, 10580–10594 (1996).
CAS
Google Scholar
Weiner, S. J., Singh, U. C. & Kollman, P. A. Simulation of formamide hydrolysis by hydroxide ion within the gasoline section and in aqueous answer. J. Am. Chem. Soc. 107, 2219–2229 (1985).
CAS
Google Scholar
Kakkis, A., Gagnon, D., Esselborn, J., Britt, R. D. & Tezcan, F. A. Metallic-templated design of chemically switchable protein assemblies with high-affinity coordination websites. Angew. Chem. Int. Ed. Engl. 59, 21940–21944 (2020).
CAS
PubMed
PubMed Central
Google Scholar
Kocyła, A., Pomorski, A. & Krężel, A. Molar absorption coefficients and stability constants of metallic complexes of 4-(2-pyridylazo)resorcinol (PAR): revisiting frequent chelating probe for the examine of metalloproteins. J. Inorg. Biochem. 152, 82–92 (2015).
PubMed
Google Scholar
Kuzmič, P. Program DYNAFIT for the evaluation of enzyme kinetic information: utility to HIV proteinase. Anal. Biochem. 237, 260–273 (1996).
PubMed
Google Scholar
Stoll, S. & Schweiger, A. EasySpin, a complete software program bundle for spectral simulation and evaluation in EPR. J. Magn. Reson. 178, 42–55 (2006).
ADS
CAS
PubMed
Google Scholar
Smilgies, D.-M. & Folta-Stogniew, E. Molecular weight-gyration radius relation of globular proteins: a comparability of sunshine scattering, small-angle X-ray scattering and structure-based information. J. Appl. Crystallogr. 48, 1604–1606 (2015).
CAS
PubMed
PubMed Central
Google Scholar