Sowers, M. et al. Adjustments in physique composition in girls over six years at midlife: ovarian and chronological ageing. J. Clin. Endocrinol. Metab. 92, 895–901 (2007).
Google Scholar
Sowers, M. R. et al. Hormone predictors of bone mineral density modifications through the menopausal transition. J. Clin. Endocrinol. Metab. 91, 1261–1267 (2006).
Google Scholar
Guo, Y. et al. Blocking FSH inhibits hepatic ldl cholesterol biosynthesis and reduces serum ldl cholesterol. Cell Res. 29, 151–166 (2019).
Google Scholar
Han, X. et al. A novel follicle-stimulating hormone vaccine for controlling fats accumulation. Theriogenology 148, 103–111 (2020).
Google Scholar
Ji, Y. et al. Epitope-specific monoclonal antibodies to FSHβ improve bone mass. Proc. Natl Acad. Sci. USA 115, 2192–2197 (2018).
Google Scholar
Liu, P. et al. Blocking FSH induces thermogenic adipose tissue and reduces physique fats. Nature 546, 107–112 (2017).
Google Scholar
Geng, W. et al. Immunization with FSHβ fusion protein antigen prevents bone loss in a rat ovariectomy-induced osteoporosis mannequin. Biochem. Biophys. Res. Commun. 434, 280–286 (2013).
Google Scholar
Fisher, D. W., Bennett, D. A. & Dong, H. Sexual dimorphism in predisposition to Alzheimer’s illness. Neurobiol. Growing older 70, 308–324 (2018).
Google Scholar
Andersen, Ok. et al. Gender variations within the incidence of AD and vascular dementia: the EURODEM research. EURODEM Incidence Analysis Group. Neurology 53, 1992–1997 (1999).
Google Scholar
Marongiu, R. Accelerated ovarian failure as a singular mannequin to check peri-menopause affect on Alzheimer’s illness. Entrance. Growing older Neurosci. 11, 242 (2019).
Google Scholar
Matyi, J. M., Rattinger, G. B., Schwartz, S., Buhusi, M. & Tschanz, J. T. Lifetime estrogen publicity and cognition in late life: the Cache County examine. Menopause 26, 1366–1374 (2019).
Google Scholar
Zandi, P. P. et al. Hormone substitute remedy and incidence of Alzheimer illness in older girls: the Cache County Research. JAMA 288, 2123–2129 (2002).
Google Scholar
O’Brien, J., Jackson, J. W., Grodstein, F., Blacker, D. & Weuve, J. Postmenopausal hormone remedy is just not related to danger of all-cause dementia and Alzheimer’s illness. Epidemiol. Rev. 36, 83–103 (2014).
Google Scholar
Shumaker, S. A. et al. Conjugated equine estrogens and incidence of possible dementia and delicate cognitive impairment in postmenopausal girls: Girls’s Well being Initiative Reminiscence Research. JAMA 291, 2947–2958 (2004).
Google Scholar
Quick, R. A., Bowen, R. L., O’Brien, P. C. & Graff-Radford, N. R. Elevated gonadotropin ranges in sufferers with Alzheimer illness. Mayo Clin. Proc. 76, 906–909 (2001).
Google Scholar
Bowen, R. L., Isley, J. P. & Atkinson, R. L. An affiliation of elevated serum gonadotropin concentrations and Alzheimer illness? J. Neuroendocrinol. 12, 351–354 (2000).
Google Scholar
Randolph, J. F. Jr et al. Change in follicle-stimulating hormone and estradiol throughout the menopausal transition: impact of age on the ultimate menstrual interval. J. Clin. Endocrinol. Metab. 96, 746–754 (2011).
Google Scholar
Epperson, C. N., Sammel, M. D. & Freeman, E. W. Menopause results on verbal reminiscence: findings from a longitudinal neighborhood cohort. J. Clin. Endocrinol. Metab. 98, 3829–3838 (2013).
Google Scholar
Greendale, G. A. et al. Results of the menopause transition and hormone use on cognitive efficiency in midlife girls. Neurology 72, 1850–1857 (2009).
Google Scholar
Meyer, P. M. et al. A population-based longitudinal examine of cognitive functioning within the menopausal transition. Neurology 61, 801–806 (2003).
Google Scholar
Zhu, L. L. et al. Blocking antibody to the β-subunit of FSH prevents bone loss by inhibiting bone resorption and stimulating bone synthesis. Proc. Natl Acad. Sci. USA 109, 14574–14579 (2012).
Google Scholar
Oddo, S. et al. Triple-transgenic mannequin of Alzheimer’s illness with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39, 409–421 (2003).
Google Scholar
Webster, S. J., Bachstetter, A. D., Nelson, P. T., Schmitt, F. A. & Van Eldik, L. J. Utilizing mice to mannequin Alzheimer’s dementia: an summary of the scientific illness and the preclinical behavioral modifications in 10 mouse fashions. Entrance. Genet. 5, 88 (2014).
Google Scholar
Carroll, J. C. et al. Progesterone and estrogen regulate Alzheimer-like neuropathology in feminine 3xTg-AD mice. J. Neurosci. 27, 13357–13365 (2007).
Google Scholar
Zhang, Z. et al. Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer’s illness. Nat. Med. 20, 1254–1262 (2014).
Google Scholar
Zhang, Z. et al. Delta-secretase cleaves amyloid precursor protein and regulates the pathogenesis in Alzheimer’s illness. Nat. Commun. 6, 8762 (2015).
Google Scholar
Rocca, W. A. et al. Elevated danger of cognitive impairment or dementia in girls who underwent oophorectomy earlier than menopause. Neurology 69, 1074–1083 (2007).
Google Scholar
Tokuyama, N. et al. Particular person and mixing results of anti-RANKL monoclonal antibody and teriparatide in ovariectomized mice. Bone Rep. 2, 1–7 (2015).
Google Scholar
Rosen, C. J. & Zaidi, M. Contemporaneous copy of preclinical science: a case examine of FSH and fats. Ann. N. Y. Acad. Sci. 1404, 17–19 (2017).
Google Scholar
Minkeviciene, R. et al. Age-related lower in stimulated glutamate launch and vesicular glutamate transporters in APP/PS1 transgenic and wild-type mice. J. Neurochem. 105, 584–594 (2008).
Google Scholar
Onos, Ok. D. et al. Enhancing face validity of mouse fashions of Alzheimer’s illness with pure genetic variation. PLoS Genet. 15, e1008155 (2019).
Google Scholar
Volianskis, A., Kostner, R., Molgaard, M., Hass, S. & Jensen, M. S. Episodic reminiscence deficits aren’t associated to altered glutamatergic synaptic transmission and plasticity within the CA1 hippocampus of the APPswe/PS1deltaE9-deleted transgenic mice mannequin of ss-amyloidosis. Neurobiol. Growing older 31, 1173–1187 (2010).
Google Scholar
Araujo, A. B. & Wittert, G. A. Endocrinology of the ageing male. Finest Pract. Res. Clin. Endocrinol. Metab. 25, 303–319 (2011).
Google Scholar
Casadesus, G. et al. Will increase in luteinizing hormone are related to declines in cognitive efficiency. Mol. Cell. Endocrinol. 269, 107–111 (2007).
Google Scholar
Berry, A., Tomidokoro, Y., Ghiso, J. & Thornton, J. Human chorionic gonadotropin (a luteinizing hormone homologue) decreases spatial reminiscence and will increase mind amyloid-β ranges in feminine rats. Horm. Behav. 54, 143–152 (2008).
Google Scholar
Liu, T., Wimalasena, J., Bowen, R. L. & Atwood, C. S. Luteinizing hormone receptor mediates neuronal pregnenolone manufacturing through up-regulation of steroidogenic acute regulatory protein expression. J. Neurochem. 100, 1329–1339 (2007).
Google Scholar
Gera, S. et al. First-in-class humanized FSH blocking antibody targets bone and fats. Proc. Natl Acad. Sci. USA 117, 28971–28979 (2020).
Google Scholar
Straccia, M. et al. Professional-inflammatory gene expression and neurotoxic results of activated microglia are attenuated by absence of CCAAT/enhancer binding protein β. J. Neuroinflammation 8, 156 (2011).
Google Scholar
Ramji, D. P. & Foka, P. CCAAT/enhancer-binding proteins: construction, operate and regulation. Biochem. J. 365, 561–575 (2002).
Google Scholar
Wang, Z. H. et al. Delta-secretase phosphorylation by SRPK2 enhances its enzymatic exercise, scary pathogenesis in Alzheimer’s illness. Mol. Cell 67, 812–825 (2017).
Google Scholar
Solar, L. et al. FSH straight regulates bone mass. Cell 125, 247–260 (2006).
Google Scholar
Hammond, S. L., Leek, A. N., Richman, E. H. & Tjalkens, R. B. Mobile selectivity of AAV serotypes for gene supply in neurons and astrocytes by neonatal intracerebroventricular injection. PLoS ONE 12, e0188830 (2017).
Google Scholar
von Jonquieres, G. et al. Recombinant human myelin-associated glycoprotein promoter drives selective AAV-mediated transgene expression in oligodendrocytes. Entrance. Mol. Neurosci. 9, 13 (2016).
Randolph, J. F. Jr. et al. Reproductive hormones within the early menopausal transition: relationship to ethnicity, physique dimension, and menopausal standing. J. Clin. Endocrinol. Metab. 88, 1516–1522 (2003).
Google Scholar
Ashe, Ok. H. & Zahs, Ok. R. Probing the biology of Alzheimer’s illness in mice. Neuron 66, 631–645 (2010).
Google Scholar
Millward, C. A. et al. Mice with a deletion within the gene for CCAAT/enhancer-binding protein β are protected in opposition to diet-induced weight problems. Diabetes 56, 161–167 (2007).
Google Scholar
Zaidi, M. et al. Actions of pituitary hormones past conventional targets. J. Endocrinol. 237, R83–R98 (2018).
Google Scholar
Silverman, E., Eimerl, S. & Orly, J. CCAAT enhancer-binding protein β and GATA-4 binding areas inside the promoter of the steroidogenic acute regulatory protein (StAR) gene are required for transcription in rat ovarian cells. J. Biol. Chem. 274, 17987–17996 (1999).
Google Scholar
Sirois, J. & Richards, J. S. Transcriptional regulation of the rat prostaglandin endoperoxide synthase 2 gene in granulosa cells. Proof for the function of a cis-acting C/EBPβ promoter ingredient. J. Biol. Chem. 268, 21931–21938 (1993).
Google Scholar
Wang, H., Liu, X., Chen, S. & Ye, Ok. Spatiotemporal activation of the C/EBPβ/δ-secretase axis regulates the pathogenesis of Alzheimer’s illness. Proc. Natl Acad. Sci. USA 115, E12427–E12434 (2018).
Google Scholar
Sterneck, E., Tessarollo, L. & Johnson, P. F. An important function for C/EBPβ in feminine copy. Genes Dev. 11, 2153–2162 (1997).
Google Scholar
Minkeviciene, R. et al. Amyloid β-induced neuronal hyperexcitability triggers progressive epilepsy. J. Neurosci. 29, 3453–3462 (2009).
Google Scholar
Zhang, Z. et al. 7,8-dihydroxyflavone prevents synaptic loss and reminiscence deficits in a mouse mannequin of Alzheimer’s illness. Neuropsychopharmacology 39, 638–650 (2014).
Google Scholar
Xiang, J. et al. Delta-secretase-cleaved Tau antagonizes TrkB neurotrophic signalings, mediating Alzheimer’s illness pathologies. Proc. Natl Acad. Sci. USA 116, 9094–9102 (2019).
Google Scholar
Leger, M. et al. Object recognition take a look at in mice. Nat. Protoc. 8, 2531–2537 (2013).
Google Scholar
Ioannidis, J. P. Why most printed analysis findings are false. PLoS Med. 2, e124 (2005).
Google Scholar
Collins, F. S. & Tabak, L. A. Coverage: NIH plans to boost reproducibility. Nature 505, 612–613 (2014).
Google Scholar
McNutt, M. Reproducibility. Science 343, 229 (2014).
Google Scholar
Mullard, A. Most cancers reproducibility challenge yields first outcomes. Nat. Rev. Drug Discov. 16, 77 (2017).
Google Scholar
Horrigan, S. Ok. et al. Replication examine: melanoma genome sequencing reveals frequent PREX2 mutations. eLife 6, e21634 (2017).
Google Scholar
Horrigan, S. Ok., Reproducibility Mission: Most cancers Biology. Replication examine: the CD47-signal regulatory protein alpha (SIRPa) interplay is a therapeutic goal for human stable tumors. eLife 6, e18173 (2017).
Google Scholar