Biocatalytic oxidative cross-coupling reactions for biaryl bond formation


  • But, L. Privileged Buildings in Drug Discovery: Medicinal Chemistry and Synthesis 1st edn, 83–154 (Wiley, 2018).

  • Yoon, T. P. & Jacobsen, E. N. Privileged chiral catalysts. Science 299, 1691–1693 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ashenhurst, J. A. Intermolecular oxidative cross-coupling of arenes. Chem. Soc. Rev. 39, 540–548 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Kozlowski, M. C. Oxidative coupling in complexity constructing transforms. Acc. Chem. Res. 50, 638–643 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Y., Lan, J. & You, J. Oxidative C–H/C–H coupling reactions between two (hetero)arenes. Chem. Rev. 117, 8787–8863 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Hüttel, W. & Müller, M. Regio- and stereoselective intermolecular phenol coupling enzymes in secondary metabolite biosynthesis. Nat. Prod. Rep. 38, 1011–1043 (2021).

    PubMed 

    Google Scholar 

  • Lunxiang, Y. & Liebscher, J. Carbon−carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem. Rev. 107, 133–173 (2007).

    Google Scholar 

  • Boström, J., Brown, D. G., Younger, R. J. & Keserü, G. M. Increasing the medicinal chemistry artificial toolbox. Nat. Rev. Drug Discov. 17, 709–727 (2018).

    PubMed 

    Google Scholar 

  • Yin, J., Rainka, M. P., Zhang, X.-X. & Buchwald, S. L. A extremely lively Suzuki catalyst for the synthesis of sterically hindered biaryls: novel ligand coordination. J. Am. Chem. Soc. 124, 1162–1163 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Cammidge, A. N. & Crépy, Ok. V. L. Synthesis of chiral binaphthalenes utilizing the uneven Suzuki response. Tetrahedron 60, 4377–4386 (2004).

    CAS 

    Google Scholar 

  • Martin, R. & Buchwald, S. L. Palladium-catalyzed Suzuki−Miyaura cross-coupling reactions using dialkylbiaryl phosphine ligands. Acc. Chem. Res. 41, 1461–1473 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Valente, C. et al. The event of cumbersome palladium NHC complexes for the most-challenging cross-coupling reactions. Angew. Chem. Int. Ed. 51, 3314–3332 (2012).

    CAS 

    Google Scholar 

  • Patel, N. D. et al. Computationally assisted mechanistic investigation and growth of Pd-catalyzed uneven Suzuki–Miyaura and Negishi cross-coupling reactions for tetra-ortho-substituted biaryl synthesis. ACS Catal. 8, 10190–10209 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ackermann, L., Potukuchi, H. Ok., Althammer, A., Born, R. & Mayer, P. Tetra-ortho-substituted biaryls via palladium-catalyzed Suzuki−Miyaura couplings with a diaminochlorophosphine ligand. Org. Lett. 12, 1004–1007 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Brown, D. G. & Boström, J. Evaluation of previous and current artificial methodologies on medicinal chemistry: the place have all the brand new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Lee, Y. E., Cao, T., Torruellas, C. & Kozlowski, M. C. Selective oxidative homo- and cross-coupling of phenols with cardio catalysts. J. Am. Chem. Soc. 136, 6782–6785 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nieves-Quinones, Y. et al. Chromium-salen catalyzed cross-coupling of phenols: mechanism and origin of the selectivity. J. Am. Chem. Soc. 141, 10016–10032 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shalit, H., Dyadyuk, A. & Pappo, D. Selective oxidative phenol coupling by iron catalysis. J. Org. Chem. 84, 1677–1686 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Reiss, H. et al. Cobalt(II)[salen]-catalyzed selective cardio oxidative cross-coupling between electron-rich phenols and 2-naphthols. J. Org. Chem. 84, 7950–7960 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Röckl, J. L., Schollmeyer, D., Franke, R. & Waldvogel, S. R. Dehydrogenative anodic C−C coupling of phenols bearing electron-withdrawing teams. Angew. Chem. Int. Ed. 59, 315–319 (2020).

    Google Scholar 

  • Kang, H. et al. Enantioselective vanadium-catalyzed oxidative coupling: growth and mechanistic insights. J. Org. Chem. 83, 14362–14384 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Libman, A. et al. Artificial and predictive strategy to unsymmetrical biphenols by iron-catalyzed chelated radical–anion oxidative coupling. J. Am. Chem. Soc. 137, 11453–11460 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Morimoto, Ok., Sakamoto, Ok., Ohshika, T., Dohi, T. & Kita, Y. Organo-iodine(III)-catalyzed oxidative phenol–arene and phenol–phenol cross-coupling response. Angew. Chem. Int. Ed. 55, 3652–3656 (2016).

    CAS 

    Google Scholar 

  • Extra, N. Y. & Jeganmohan, M. Oxidative cross-coupling of two totally different phenols: an environment friendly path to unsymmetrical biphenols. Org. Lett. 17, 3042–3045 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Egami, H. & Katsuki, T. Iron-catalyzed uneven cardio oxidation: oxidative coupling of 2-naphthols. J. Am. Chem. Soc. 131, 6082–6083 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Hovorka, M., Günterova, J. & Zavada, J. Extremely selective oxidative cross-coupling of substituted 2-naphthols: a handy strategy to unsymmetrical 1, 1′-binaphthalene-2, 2′-diols. Tetrahedron Lett. 31, 413–416 (1990).

    CAS 

    Google Scholar 

  • Li, X., Hewgley, J. B., Mulrooney, C. A., Yang, J. & Kozlowski, M. C. Enantioselective oxidative biaryl coupling reactions catalyzed by 1,5-diazadecalin steel complexes: environment friendly formation of chiral functionalized BINOL derivatives. J. Org. Chem. 68, 5500–5511 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Tian, J.-M. et al. Copper-complex-catalyzed uneven cardio oxidative cross-coupling of 2-naphthols: enantioselective synthesis of three,3′-substituted C1-symmetric BINOLs. Angew. Chem. Int. Ed. 58, 11023–11027 (2019).

    CAS 

    Google Scholar 

  • Bringmann, G. et al. Atroposelective synthesis of axially chiral biaryl compounds. Angew. Chem. Int. Ed. 44, 5384–5427 (2005).

    CAS 

    Google Scholar 

  • Kočovský, P., Vyskočil, Š. & Smrčina, M. Non-symmetrically substituted 1,1‘-binaphthyls in enantioselective catalysis. Chem. Rev. 103, 3213–3246 (2003).

    PubMed 

    Google Scholar 

  • Kozlowski, M. C., Morgan, B. J. & Linton, E. C. Whole synthesis of chiral biaryl pure merchandise by uneven biaryl coupling. Chem. Soc. Rev. 38, 3193–3207 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bringmann, G., Gulder, T., Gulder, T. A. M. & Breuning, M. Atroposelective whole synthesis of axially chiral biaryl pure merchandise. Chem. Rev. 111, 563–639 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Aldemir, H., Richarz, R. & Gulder, T. A. The biocatalytic repertoire of pure biaryl formation. Angew. Chem. Int. Ed. 53, 8286–8293 (2014).

    CAS 

    Google Scholar 

  • Mate, D. M. & Alcalde, M. Laccase: a multi-purpose biocatalyst on the forefront of biotechnology. Microb. Biotechnol. 10, 1457–1467 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Sagui, F. et al. Laccase-catalyzed coupling of catharanthine and vindoline: an environment friendly strategy to the bisindole alkaloid anhydrovinblastine. Tetrahedron 65, 312–317 (2009).

    CAS 

    Google Scholar 

  • Obermaier, S., Thiele, W., Fürtges, L. & Müller, M. Enantioselective phenol coupling by laccases within the biosynthesis of fungal dimeric naphthopyrones. Angew. Chem. Int. Ed. 58, 9125–9128 (2019).

    CAS 

    Google Scholar 

  • Fasan, R. Tuning P450 enzymes as oxidation catalysts. ACS Catal. 2, 647–666 (2012).

    CAS 

    Google Scholar 

  • Gil Girol, C. et al. Regio‐ and stereoselective oxidative phenol coupling in Aspergillus niger. Angew. Chem. Int. Ed. 51, 9788–9791 (2012).

    CAS 

    Google Scholar 

  • Mazzaferro, L. S., Huttel, W., Fries, A. & Müller, M. Cytochrome P450-catalyzed regio- and stereoselective phenol coupling of fungal pure merchandise. J. Am. Chem. Soc. 137, 12289–12295 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Chakrabarty, S., Wang, Y., Perkins, J. C. & Narayan, A. R. H. Scalable biocatalytic C–H oxyfunctionalization reactions. Chem. Soc. Rev. 49, 8137–8155 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Noji, M., Nakajima, M. & Koga, Ok. A brand new catalytic system for cardio oxidative coupling of 2-naphthol derivatives by way of CuCl-amine advanced: a sensible synthesis of binaphthol derivatives. Tetrahedron Lett. 35, 7983–7984 (1994).

    CAS 

    Google Scholar 

  • Nakajima, M. Synthesis and utility of novel biaryl compounds with axial chirality as catalysts in enantioselective reactions. Yakugaku Zasshi 120, 68–75 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Langeslay, R. R. et al. Catalytic functions of vanadium: a mechanistic perspective. Chem. Rev. 119, 2128–2191 (2018).

    PubMed 

    Google Scholar 

  • Shannon, P. et al. Cytoscape: a software program atmosphere for built-in fashions of biomolecular interplay networks. Genome Res. 13, 2498–2504 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gerlt, J. A. et al. Enzyme Perform Initiative-Enzyme Similarity Device (EFI-EST): an internet instrument for producing protein sequence similarity networks. Biochim. Biophys. Acta 1854, 1019–1037 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zallot, R., Oberg, N. O. & Gerlt, J. A. ‘Democratized’ genomic enzymology internet instruments for purposeful project. Curr. Opin. Chem. Biol. 47, 77–85 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zallot, R., Oberg, N. & Gerlt, J. A. The EFI internet useful resource for genomic enzymology instruments: leveraging protein, genome, and metagenome databases to find novel enzymes and metabolic pathways. Biochemistry 58, 4169–4182 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Funa, N., Funabashi, M., Ohnishi, Y. & Horinouchi, S. Biosynthesis of hexahydroxyperylenequinone melanin by way of oxidative aryl coupling by cytochrome P-450 in Streptomyces griseus. J. Bacteriol. 187, 8149–8155 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, B. et al. Binding of two flaviolin substrate molecules, oxidative coupling, and crystal construction of Streptomyces coelicolor A3(2) cytochrome P450 158A2. J. Biol. Chem. 280, 11599–11607 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Li, S., Podust, L. M. & Sherman, D. H. Engineering and evaluation of a self-sufficient biosynthetic cytochrome P450 PikC fused to the RhFRED reductase area. J. Am. Chem. Soc. 129, 12940–12941 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beyond the Elements: Reactions Interactive | NOVA | PBS | NOVA



    Physics + MathPhysics & Math

    Nova

    As any viewer of NOVA’s “Past the Components” sequence can inform, host David Pogue has a blast exploring the fantastic world of chemistry and bringing it to tens of millions of PBS viewers. However why ought to David have all of the enjoyable? To offer college students an opportunity to research 4 of the world-shaping reactions featured within the sequence for themselves, we’ve created the “Past the Components Reactions Interactive.”

    Exploration of every response unfolds in three elements. First, gamers study why the response issues and get an outline of the way it works by watching video clips from “Past the Components”. That prepares them to play a sequence of three mini-games through which they have to determine the reactants and merchandise, stability the chemical equation, and assemble the molecular merchandise. Lastly, extra video clips present additional context for the response they only mastered, together with methods scientists try to optimize its international impacts.

    NOVA has additionally produced an educator information to accompany the movie and the Reactions Interactive with actions designed to spark college students’ curiosity about chemistry and materials science. The educator information offers instructing ideas and actions to bolster the ideas and tales explored within the “Past the Components” documentary sequence and the interactive. It’s free and accessible within the “Past the Components” assortment of academic sources on PBS LearningMedia.