But, L. Privileged Buildings in Drug Discovery: Medicinal Chemistry and Synthesis 1st edn, 83–154 (Wiley, 2018).
Yoon, T. P. & Jacobsen, E. N. Privileged chiral catalysts. Science 299, 1691–1693 (2003).
Google Scholar
Ashenhurst, J. A. Intermolecular oxidative cross-coupling of arenes. Chem. Soc. Rev. 39, 540–548 (2010).
Google Scholar
Kozlowski, M. C. Oxidative coupling in complexity constructing transforms. Acc. Chem. Res. 50, 638–643 (2017).
Google Scholar
Yang, Y., Lan, J. & You, J. Oxidative C–H/C–H coupling reactions between two (hetero)arenes. Chem. Rev. 117, 8787–8863 (2017).
Google Scholar
Hüttel, W. & Müller, M. Regio- and stereoselective intermolecular phenol coupling enzymes in secondary metabolite biosynthesis. Nat. Prod. Rep. 38, 1011–1043 (2021).
Google Scholar
Lunxiang, Y. & Liebscher, J. Carbon−carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem. Rev. 107, 133–173 (2007).
Boström, J., Brown, D. G., Younger, R. J. & Keserü, G. M. Increasing the medicinal chemistry artificial toolbox. Nat. Rev. Drug Discov. 17, 709–727 (2018).
Google Scholar
Yin, J., Rainka, M. P., Zhang, X.-X. & Buchwald, S. L. A extremely lively Suzuki catalyst for the synthesis of sterically hindered biaryls: novel ligand coordination. J. Am. Chem. Soc. 124, 1162–1163 (2002).
Google Scholar
Cammidge, A. N. & Crépy, Ok. V. L. Synthesis of chiral binaphthalenes utilizing the uneven Suzuki response. Tetrahedron 60, 4377–4386 (2004).
Google Scholar
Martin, R. & Buchwald, S. L. Palladium-catalyzed Suzuki−Miyaura cross-coupling reactions using dialkylbiaryl phosphine ligands. Acc. Chem. Res. 41, 1461–1473 (2008).
Google Scholar
Valente, C. et al. The event of cumbersome palladium NHC complexes for the most-challenging cross-coupling reactions. Angew. Chem. Int. Ed. 51, 3314–3332 (2012).
Google Scholar
Patel, N. D. et al. Computationally assisted mechanistic investigation and growth of Pd-catalyzed uneven Suzuki–Miyaura and Negishi cross-coupling reactions for tetra-ortho-substituted biaryl synthesis. ACS Catal. 8, 10190–10209 (2018).
Google Scholar
Ackermann, L., Potukuchi, H. Ok., Althammer, A., Born, R. & Mayer, P. Tetra-ortho-substituted biaryls via palladium-catalyzed Suzuki−Miyaura couplings with a diaminochlorophosphine ligand. Org. Lett. 12, 1004–1007 (2010).
Google Scholar
Brown, D. G. & Boström, J. Evaluation of previous and current artificial methodologies on medicinal chemistry: the place have all the brand new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).
Google Scholar
Lee, Y. E., Cao, T., Torruellas, C. & Kozlowski, M. C. Selective oxidative homo- and cross-coupling of phenols with cardio catalysts. J. Am. Chem. Soc. 136, 6782–6785 (2014).
Google Scholar
Nieves-Quinones, Y. et al. Chromium-salen catalyzed cross-coupling of phenols: mechanism and origin of the selectivity. J. Am. Chem. Soc. 141, 10016–10032 (2019).
Google Scholar
Shalit, H., Dyadyuk, A. & Pappo, D. Selective oxidative phenol coupling by iron catalysis. J. Org. Chem. 84, 1677–1686 (2019).
Google Scholar
Reiss, H. et al. Cobalt(II)[salen]-catalyzed selective cardio oxidative cross-coupling between electron-rich phenols and 2-naphthols. J. Org. Chem. 84, 7950–7960 (2019).
Google Scholar
Röckl, J. L., Schollmeyer, D., Franke, R. & Waldvogel, S. R. Dehydrogenative anodic C−C coupling of phenols bearing electron-withdrawing teams. Angew. Chem. Int. Ed. 59, 315–319 (2020).
Kang, H. et al. Enantioselective vanadium-catalyzed oxidative coupling: growth and mechanistic insights. J. Org. Chem. 83, 14362–14384 (2018).
Google Scholar
Libman, A. et al. Artificial and predictive strategy to unsymmetrical biphenols by iron-catalyzed chelated radical–anion oxidative coupling. J. Am. Chem. Soc. 137, 11453–11460 (2015).
Google Scholar
Morimoto, Ok., Sakamoto, Ok., Ohshika, T., Dohi, T. & Kita, Y. Organo-iodine(III)-catalyzed oxidative phenol–arene and phenol–phenol cross-coupling response. Angew. Chem. Int. Ed. 55, 3652–3656 (2016).
Google Scholar
Extra, N. Y. & Jeganmohan, M. Oxidative cross-coupling of two totally different phenols: an environment friendly path to unsymmetrical biphenols. Org. Lett. 17, 3042–3045 (2015).
Google Scholar
Egami, H. & Katsuki, T. Iron-catalyzed uneven cardio oxidation: oxidative coupling of 2-naphthols. J. Am. Chem. Soc. 131, 6082–6083 (2009).
Google Scholar
Hovorka, M., Günterova, J. & Zavada, J. Extremely selective oxidative cross-coupling of substituted 2-naphthols: a handy strategy to unsymmetrical 1, 1′-binaphthalene-2, 2′-diols. Tetrahedron Lett. 31, 413–416 (1990).
Google Scholar
Li, X., Hewgley, J. B., Mulrooney, C. A., Yang, J. & Kozlowski, M. C. Enantioselective oxidative biaryl coupling reactions catalyzed by 1,5-diazadecalin steel complexes: environment friendly formation of chiral functionalized BINOL derivatives. J. Org. Chem. 68, 5500–5511 (2003).
Google Scholar
Tian, J.-M. et al. Copper-complex-catalyzed uneven cardio oxidative cross-coupling of 2-naphthols: enantioselective synthesis of three,3′-substituted C1-symmetric BINOLs. Angew. Chem. Int. Ed. 58, 11023–11027 (2019).
Google Scholar
Bringmann, G. et al. Atroposelective synthesis of axially chiral biaryl compounds. Angew. Chem. Int. Ed. 44, 5384–5427 (2005).
Google Scholar
Kočovský, P., Vyskočil, Š. & Smrčina, M. Non-symmetrically substituted 1,1‘-binaphthyls in enantioselective catalysis. Chem. Rev. 103, 3213–3246 (2003).
Google Scholar
Kozlowski, M. C., Morgan, B. J. & Linton, E. C. Whole synthesis of chiral biaryl pure merchandise by uneven biaryl coupling. Chem. Soc. Rev. 38, 3193–3207 (2009).
Google Scholar
Bringmann, G., Gulder, T., Gulder, T. A. M. & Breuning, M. Atroposelective whole synthesis of axially chiral biaryl pure merchandise. Chem. Rev. 111, 563–639 (2011).
Google Scholar
Aldemir, H., Richarz, R. & Gulder, T. A. The biocatalytic repertoire of pure biaryl formation. Angew. Chem. Int. Ed. 53, 8286–8293 (2014).
Google Scholar
Mate, D. M. & Alcalde, M. Laccase: a multi-purpose biocatalyst on the forefront of biotechnology. Microb. Biotechnol. 10, 1457–1467 (2017).
Google Scholar
Sagui, F. et al. Laccase-catalyzed coupling of catharanthine and vindoline: an environment friendly strategy to the bisindole alkaloid anhydrovinblastine. Tetrahedron 65, 312–317 (2009).
Google Scholar
Obermaier, S., Thiele, W., Fürtges, L. & Müller, M. Enantioselective phenol coupling by laccases within the biosynthesis of fungal dimeric naphthopyrones. Angew. Chem. Int. Ed. 58, 9125–9128 (2019).
Google Scholar
Fasan, R. Tuning P450 enzymes as oxidation catalysts. ACS Catal. 2, 647–666 (2012).
Google Scholar
Gil Girol, C. et al. Regio‐ and stereoselective oxidative phenol coupling in Aspergillus niger. Angew. Chem. Int. Ed. 51, 9788–9791 (2012).
Google Scholar
Mazzaferro, L. S., Huttel, W., Fries, A. & Müller, M. Cytochrome P450-catalyzed regio- and stereoselective phenol coupling of fungal pure merchandise. J. Am. Chem. Soc. 137, 12289–12295 (2015).
Google Scholar
Chakrabarty, S., Wang, Y., Perkins, J. C. & Narayan, A. R. H. Scalable biocatalytic C–H oxyfunctionalization reactions. Chem. Soc. Rev. 49, 8137–8155 (2020).
Google Scholar
Noji, M., Nakajima, M. & Koga, Ok. A brand new catalytic system for cardio oxidative coupling of 2-naphthol derivatives by way of CuCl-amine advanced: a sensible synthesis of binaphthol derivatives. Tetrahedron Lett. 35, 7983–7984 (1994).
Google Scholar
Nakajima, M. Synthesis and utility of novel biaryl compounds with axial chirality as catalysts in enantioselective reactions. Yakugaku Zasshi 120, 68–75 (2000).
Google Scholar
Langeslay, R. R. et al. Catalytic functions of vanadium: a mechanistic perspective. Chem. Rev. 119, 2128–2191 (2018).
Google Scholar
Shannon, P. et al. Cytoscape: a software program atmosphere for built-in fashions of biomolecular interplay networks. Genome Res. 13, 2498–2504 (2003).
Google Scholar
Gerlt, J. A. et al. Enzyme Perform Initiative-Enzyme Similarity Device (EFI-EST): an internet instrument for producing protein sequence similarity networks. Biochim. Biophys. Acta 1854, 1019–1037 (2015).
Google Scholar
Zallot, R., Oberg, N. O. & Gerlt, J. A. ‘Democratized’ genomic enzymology internet instruments for purposeful project. Curr. Opin. Chem. Biol. 47, 77–85 (2018).
Google Scholar
Zallot, R., Oberg, N. & Gerlt, J. A. The EFI internet useful resource for genomic enzymology instruments: leveraging protein, genome, and metagenome databases to find novel enzymes and metabolic pathways. Biochemistry 58, 4169–4182 (2019).
Google Scholar
Funa, N., Funabashi, M., Ohnishi, Y. & Horinouchi, S. Biosynthesis of hexahydroxyperylenequinone melanin by way of oxidative aryl coupling by cytochrome P-450 in Streptomyces griseus. J. Bacteriol. 187, 8149–8155 (2005).
Google Scholar
Zhao, B. et al. Binding of two flaviolin substrate molecules, oxidative coupling, and crystal construction of Streptomyces coelicolor A3(2) cytochrome P450 158A2. J. Biol. Chem. 280, 11599–11607 (2005).
Google Scholar
Li, S., Podust, L. M. & Sherman, D. H. Engineering and evaluation of a self-sufficient biosynthetic cytochrome P450 PikC fused to the RhFRED reductase area. J. Am. Chem. Soc. 129, 12940–12941 (2007).
Google Scholar