A repeating fast radio burst source in a globular cluster


  • Petroff, E., Hessels, J. W. T. & Lorimer, D. R. Quick radio bursts. Astron. Astrophys. Rev. 27, 4 (2019).

    ADS 

    Google Scholar 

  • Spitler, L. G. et al. A repeating quick radio burst. Nature 531, 202–205 (2016).

    ADS 
    CAS 

    Google Scholar 

  • The CHIME/FRB Collaboration. The primary CHIME/FRB quick radio burst catalog. Astrophys. J. Suppl. Ser. 257, 59 (2021).

    ADS 

    Google Scholar 

  • Margalit, B. & Metzger, B. D. A concordance image of FRB 121102 as a flaring magnetar embedded in a magnetized ion–electron wind nebula. Astrophys. J. Lett. 868, 4 (2018).

    ADS 

    Google Scholar 

  • The CHIME/FRB Collaboration. A vibrant millisecond-duration radio burst from a Galactic magnetar. Nature 587, 54–58 (2020).

    ADS 

    Google Scholar 

  • Bhardwaj, M. et al. A close-by repeating quick radio burst within the course of M81. Astrophys. J. Lett. 910, 18 (2021).

    ADS 

    Google Scholar 

  • Margalit, B., Berger, E. & Metzger, B. D. Quick radio bursts from magnetars born in binary neutron star mergers and accretion induced collapse. Astrophys. J. 886, 110 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Freedman, W. L. et al. The Hubble Area Telescope Extragalactic Distance Scale Key Challenge. I. The invention of cepheids and a brand new distance to M81. Astrophys. J. 427, 628–655 (1994).

    ADS 

    Google Scholar 

  • Lazarus, P. et al. Prospects for high-precision pulsar timing with the brand new Effelsberg PSRIX backend. Mon. Not. R. Astron. Soc. 458, 868–880 (2016).

    ADS 

    Google Scholar 

  • Nimmo, Ok. et al. Burst timescales and luminosities hyperlink younger pulsars and quick radio bursts. Nat. Astron., within the press (2022).

  • Keimpema, A. et al. The SFXC software program correlator for very lengthy baseline interferometry: algorithms and implementation. Exp. Astron. 39, 259–279 (2015).

    ADS 

    Google Scholar 

  • Charlot, P. et al. The third realization of the Worldwide Celestial Reference Body by very lengthy baseline interferometry. Astron. Astrophys. 644, A159 (2020).

    CAS 

    Google Scholar 

  • Perelmuter, J.-M., Brodie, J. P. & Huchra, J. P. Kinematics and metallicity of 25 globular clusters in M81. Astron. J. 110, 620–627 (1995).

    ADS 
    CAS 

    Google Scholar 

  • Perelmuter, J.-M. & Racine, R. The globular cluster system of M81. Astron. J. 109, 1055–1070 (1995).

    ADS 
    CAS 

    Google Scholar 

  • Moffat, A. F. J. A theoretical investigation of focal stellar photographs within the photographic emulsion and utility to photographic photometry. Astron. Astrophys. 3, 455–461 (1969).

    ADS 

    Google Scholar 

  • Gaia Collaboration. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

    Google Scholar 

  • Gaia Collaboration. Gaia Early Knowledge Launch 3: abstract of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).

    Google Scholar 

  • Harris, W. E., Harris, G. L. H. & Alessi, M. A catalog of globular cluster techniques: what determines the scale of a galaxy’s globular cluster inhabitants? Astrophys. J. 772, 82 (2013).

    ADS 

    Google Scholar 

  • Marcote, B. et al. A repeating quick radio burst supply localized to a close-by spiral galaxy. Nature 577, 190–194 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Marcote, B. et al. The repeating quick radio burst FRB 121102 as seen on milliarcsecond angular scales. Astrophys. J. Lett. 834, L8 (2017).

    ADS 

    Google Scholar 

  • Ajello, M. et al. The fourth catalog of energetic galactic nuclei detected by the Fermi Giant Space Telescope. Astrophys. J. 892, 105 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Abdo, A. A. et al. Detection of gamma-ray emission from the starburst galaxies M82 and NGC 253 with the Giant Space Telescope on Fermi. Astrophys. J. Lett. 709, L152–L157 (2010).

    ADS 
    CAS 

    Google Scholar 

  • Hut, P. et al. Binaries in globular clusters. Publ. Astron. Soc. Pac. 104, 981 (1992).

    ADS 

    Google Scholar 

  • Pooley, D. et al. Dynamical formation of shut binary techniques in globular clusters. Astrophys. J. Lett. 591, L131–L134 (2003).

    ADS 

    Google Scholar 

  • Verbunt, F. Binary evolution and neutron stars in globular clusters. In New Horizons in Globular Cluster Astronomy: Proceedings of a Convention Held at Università di Padova, Padova, Italy 24–28 June, 2002 (eds Piotto, G. et al.) 245–254 (Astronomical Society of the Pacific, 2003).

  • Wang, B. & Liu, D. The formation of neutron star techniques by way of accretion-induced collapse in white-dwarf binaries. Res. Astron. Astrophys. 20, 135 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Giacomazzo, B. & Perna, R. Formation of secure magnetars from binary neutron star mergers. Astrophys. J. Lett. 771, L26 (2013).

    ADS 

    Google Scholar 

  • Schwab, J., Quataert, E. & Kasen, D. The evolution and destiny of super-Chandrasekhar mass white dwarf merger remnants. Mon. Not. R. Astron. Soc. 463, 3461–3475 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Zhong, S.-Q. & Dai, Z.-G. Magnetars from neutron star–white dwarf mergers: utility to quick radio bursts. Astrophys. J. 893, 9 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Prager, B. J. et al. Utilizing long-term millisecond pulsar timing to acquire bodily traits of the bulge globular cluster Terzan 5. Astrophys. J. 845, 148 (2017).

    ADS 

    Google Scholar 

  • Mottez, F. & Zarka, P. Radio emissions from pulsar companions: a refutable rationalization for galactic transients and quick radio bursts. Astron. Astrophys. 569, A86 (2014).

    ADS 

    Google Scholar 

  • Mottez, F., Zarka, P. & Voisin, G. Repeating quick radio bursts brought on by small our bodies orbiting a pulsar or a magnetar. Astron. Astrophys. 644, A145 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Ablimit, I. & Li, X.-D. Formation of binary millisecond pulsars by accretion-induced collapse of white dwarfs beneath wind-driven evolution. Astrophys. J. 800, 98 (2015).

    ADS 

    Google Scholar 

  • Ye, C. S., Kremer, Ok., Chatterjee, S., Rodriguez, C. L. & Rasio, F. A. Millisecond pulsars and black holes in globular clusters. Astrophys. J. 877, 122 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Heinke, C. O. et al. Evaluation of the quiescent low-mass X-ray binary inhabitants in Galactic globular clusters. Astrophys. J. 598, 501–515 (2003).

    ADS 
    CAS 

    Google Scholar 

  • Sridhar, N. et al. Periodic quick radio bursts from luminous X-ray binaries. Astrophys. J. 917, 13 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Kaaret, P., Feng, H. & Roberts, T. P. Ultraluminous X-ray sources. Annu. Rev. Astron. Astrophys. 55, 303–341 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Bachetti, M. et al. An ultraluminous X-ray supply powered by an accreting neutron star. Nature 514, 202–204 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Webb, N. et al. Radio detections throughout two state transitions of the intermediate-mass black gap HLX-1. Science 337, 554–556 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dage, Ok. C. et al. X-ray spectroscopy of newly recognized ULXs related to M87’s globular cluster inhabitants. Mon. Not. R. Astron. Soc. 497, 596–608 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Chatterjee, S. et al. A direct localization of a quick radio burst and its host. Nature 541, 58–61 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Ravi, V. et al. The host galaxy and protracted radio counterpart of FRB 20201124A. Preprint at https://arxiv.org/abs/2106.09710 (2021).

  • Bassa, C. G. et al. FRB 121102 is coincident with a star-forming area in its host galaxy. Astrophys. J. Lett. 843, L8 (2017).

    ADS 

    Google Scholar 

  • Tendulkar, S. P. et al. The 60 computer setting of FRB 20180916B. Astrophys. J. Lett. 908, L12 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Piro, L. et al. The quick radio burst FRB 20201124A in a star-forming area: constraints to the progenitor and multiwavelength counterparts. Astron. Astrophys. 656, L15 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Fong, W.-f et al. Chronicling the host galaxy properties of the exceptional repeating FRB 20201124A. Astrophys. J. Lett. 919, L23 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Remazeilles, M., Dickinson, C., Banday, A. J., Bigot-Sazy, M. A. & Ghosh, T. An improved source-subtracted and destriped 408-MHz all-sky map. Mon. Not. R. Astron. Soc. 451, 4311–4327 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Reich, P. & Reich, W. Spectral index variations of the galactic radio continuum emission : proof for a galactic wind. Astron. Astrophys. 196, 211–226 (1988).

    ADS 

    Google Scholar 

  • Mather, J. C. et al. Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument. Astrophys. J. 420, 439–444 (1994).

    ADS 

    Google Scholar 

  • Whitney, A. et al. VLBI knowledge interchange format (VDIF). In Sixth Worldwide VLBI Service for Geodesy and Astronomy. Proceedings from the 2010 Basic Assembly (eds Navarro, R. et al.) 192–196 (NASA, 2010).

  • Whitney, A. The Mark 5B VLBI knowledge system. In Proc. seventh European VLBI Community Symp. on VLBI Scientific Analysis and Expertise (eds Bachiller, R et al.) 251–252 (EVN, 2004).

  • Kirsten, F. et al. Detection of two vibrant radio bursts from magnetar SGR 1935 + 2154. Nat. Astron. 5, 414–422 (2021).

    ADS 

    Google Scholar 

  • Agarwal, D., Aggarwal, Ok., Burke-Spolaor, S., Lorimer, D. R. & Garver-Daniels, N. FETCH: a deep-learning based mostly classifier for quick transient classification. Mon. Not. R. Astron. Soc. 497, 1661–1674 (2020).

    ADS 

    Google Scholar 

  • Ransom, S. M. New Search Strategies for Binary Pulsars. PhD thesis, Harvard Univ. 2001).

  • Ransom, S. PRESTO: PulsaR Exploration and Search Toolkit. Astrophysics Supply Code Library http://ascl.internet/1107.017 (2011).

  • Michilli, D. et al. Single-pulse classifier for the LOFAR Tied-Array All-sky Survey. Mon. Not. R. Astron. Soc. 480, 3457–3467 (2018).

    ADS 

    Google Scholar 

  • Greisen, E. W. AIPS, the VLA, and the VLBA. In Info Dealing with in Astronomy – Historic Vistas (ed. Heck, A.) 109–125 (Kluwer Tutorial, 2003).

  • Shepherd, M. C., Pearson, T. J. & Taylor, G. B. DIFMAP: an interactive program for synthesis imaging. Bull. Am. Astron. Soc. 26, 987–989 (1994).

    ADS 

    Google Scholar 

  • Legislation, C. J. et al. realfast: real-time, commensal quick transient surveys with the Very Giant Array. Astrophys. J. Suppl. Ser. 236, 8 (2018).

    ADS 

    Google Scholar 

  • Polisensky, E. et al. Exploring the transient radio sky with VLITE: early outcomes. Astrophys. J. 832, 60 (2016).

    ADS 

    Google Scholar 

  • Clarke, T. E. et al. Commensal low frequency observing on the NRAO VLA: VLITE standing and future plans. In Proc. SPIE 9906: Floor-based and Airborne Telescopes VI (eds Corridor, H. J. et al.) 99065B (SPIE, 2016).

  • Bethapudi, S. et al. The primary quick radio burst detected with VLITE-Quick. Res. Not. Am. Astron. Soc. 5, 46 (2021).

    ADS 

    Google Scholar 

  • Cotton, W. D. Obit: a growth setting for astronomical algorithms. Publ. Astron. Soc. Pac. 120, 439–448 (2008).

    ADS 

    Google Scholar 

  • Offringa, A. R. et al. WSCLEAN: an implementation of a quick, generic wide-field imager for radio astronomy. Mon. Not. R. Astron. Soc. 444, 606–619 (2014).

    ADS 

    Google Scholar 

  • Miyazaki, S. et al. Hyper Suprime-Cam. In Proc. SPIE 8446: Floor-based and Airborne Instrumentation for Astronomy IV (eds McLean, I. S. et al.) 84460Z (SPIE, 2012).

  • Bosch, J. et al. The Hyper Suprime-Cam software program pipeline. Publ. Astron. Soc. Pac. 70, S5 (2018).

    Google Scholar 

  • Flewelling, H. A. et al. The Pan-STARRS1 database and knowledge merchandise. Astrophys. J. Suppl. Ser. 251, 7 (2020).

    ADS 

    Google Scholar 

  • Garmire, G. P. et al. Superior CCD imaging spectrometer (ACIS) instrument on the Chandra X-ray Observatory. In Proc. SPIE 4851: X-ray and Gamma-ray Telescopes and Devices for Astronomy (eds Truemper, J. E. & Tananbaum, H. D.) 28–44 (SPIE, 2003).

  • Fruscione, A. et al. CIAO: Chandra’s knowledge evaluation system. In Proc. SPIE 6270: Observatory Operations: Methods, Processes, and Methods (eds Silva, D. R. & Doxsey, R. E.) 62701V (2006).

  • Kraft, R. P., Burrows, D. N. & Nousek, J. A. Willpower of confidence limits for experiments with low numbers of counts. Astrophys. J. 374, 344–355 (1991).

    ADS 

    Google Scholar 

  • Ballet, J., Burnett, T. H., Digel, S. W. & Lott, B. Fermi Giant Space Telescope Fourth Supply Catalog. Preprint at https://arxiv.org/abs/2005.11208 (2020).

  • Abdo, A. A. et al. A inhabitants of gamma-ray emitting globular clusters seen with the Fermi Giant Space Telescope. Astron. Astrophys. 524, A75 (2010).

    Google Scholar 

  • Hessels, J. W. T. et al. FRB 121102 bursts present advanced time-frequency construction. Astrophys. J. Lett. 876, L23 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Kirsten, F., Vlemmings, W., Campbell, R. M., Kramer, M. & Chatterjee, S. Revisiting the start areas of pulsars B1929+10, B2020+28, and B2021+51. Astron. Astrophys. 577, A111 (2015).

    ADS 

    Google Scholar 

  • Condon, J. J. et al. Resolving the radio supply background: deeper understanding by way of confusion. Astrophys. J. 758, 23 (2012).

    ADS 

    Google Scholar 

  • Beck, R. et al. PS1-STRM: neural community supply classification and photometric redshift catalogue for PS1 3π DR1. Mon. Not. R. Astron. Soc. 500, 1633–1644 (2021).

    ADS 

    Google Scholar 

  • Bloom, J. S., Kulkarni, S. R. & Djorgovski, S. G. The noticed offset distribution of gamma-ray bursts from their host galaxies: a strong clue to the character of the progenitors. Astrophys. J. 123, 1111–1148 (2002).

    Google Scholar 

  • Leja, J., Johnson, B. D., Conroy, C., van Dokkum, P. G. & Byler, N. Deriving bodily properties from broadband photometry with Prospector: description of the mannequin and an indication of its accuracy utilizing 129 galaxies within the native Universe. Astrophys. J. 837, 170 (2017).

    ADS 

    Google Scholar 

  • Johnson, B. D., Leja, J. L., Conroy, C. & Speagle, J. S. Prospector: stellar inhabitants inference from spectra and SEDs. Astrophysics Supply Code Library http://ascl.internet/1905.025 (2019).

  • Alam, S. et al. The eleventh and twelfth knowledge releases of the Sloan Digital Sky Survey: last knowledge from SDSS-III. Astrophys. J. Suppl. Ser. 219, 12 (2015).

    ADS 

    Google Scholar 

  • Simha, V. et al. Parametrising star formation histories. Preprint at https://arxiv.org/abs/1404.0402 (2014).

  • Carnall, A. C. et al. Methods to measure galaxy star formation histories. I. Parametric fashions. Astrophys. J. 873, 44 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Draine, B. T. & Li, A. Infrared emission from interstellar mud. IV. The silicate–graphite–PAH mannequin within the post-Spitzer period. Astrophys. J. 657, 810–837 (2007).

    ADS 
    CAS 

    Google Scholar 

  • Bertelli, G., Bressan, A., Chiosi, C., Fagotto, F. & Nasi, E. Theoretical isochrones from fashions with new radiative opacities. Astron. Astrophys. Suppl. Ser. 106, 275–302 (1994).

    ADS 

    Google Scholar 

  • Ma, J. et al. Metallic abundance properties of M81 globular cluster system. Publ. Astron. Soc. Pac. 119, 1085–1092 (2007).

    ADS 

    Google Scholar 

  • Kremer, Ok. et al. White dwarf subsystems in core-collapsed globular clusters. Astrophys. J. 917, 28 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Ye, C. S. et al. On the speed of neutron star binary mergers from globular clusters. Astrophys. J. Lett. 888, L10 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Boyles, J. et al. Younger radio pulsars in Galactic globular clusters. Astrophys. J. 742, 51 (2011).

    ADS 

    Google Scholar 

  • Hessels, J. et al. Pulsars in globular clusters with the SKA. In Advancing Astrophysics with the Sq. Kilometre Array (AASKA14) 47 (2015).

  • Lyne, A. G., Manchester, R. N. & D’Amico, N. PSR B1745-20 and younger pulsars in globular clusters. Astrophys. J. Lett. 460, L41 (1996).

    ADS 

    Google Scholar 

  • Macquart, J. P. et al. A census of baryons within the Universe from localized quick radio bursts. Nature 581, 391–395 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cordes, J. M. & Lazio, T. J. W. NE2001.I. A brand new mannequin for the Galactic distribution of free electrons and its fluctuations. Preprint at https://arxiv.org/abs/astro-ph/0207156 (2002).

  • Yao, J. M., Manchester, R. N. & Wang, N. A brand new electron-density mannequin for estimation of pulsar and FRB distances. Astrophys. J. 835, 29 (2017).

    ADS 

    Google Scholar 

  • Keating, L. C. & Pen, U.-L. Exploring the dispersion measure of the Milky Means halo. Mon. Not. R. Astron. Soc. 496, L106–L110 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Yamasaki, S. & Totani, T. The Galactic halo contribution to the dispersion measure of extragalactic quick radio bursts. Astrophys. J. 888, 105 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Prochaska, J. X. & Zheng, Y. Probing Galactic haloes with quick radio bursts. Mon. Not. R. Astron. Soc. 485, 648–665 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Hutschenreuter, S. et al. The Galactic Faraday rotation sky 2020. Astron. Astrophys. 657, A43 (2022).

    Google Scholar 

  • The CHIME/FRB Collaboration. CHIME/FRB discovery of eight new repeating quick radio burst sources. Astrophys. J. Lett. 885, L24 (2019).

    ADS 

    Google Scholar 

  • Michilli, D. et al. An excessive magneto-ionic setting related to the quick radio burst supply FRB 121102. Nature 553, 182–185 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Hobbs, G., Manchester, R., Teoh, A. & Hobbs, M. The ATNF Pulsar Catalog. In IAU Symp. No. 218: Younger Neutron Stars and Their Environments (eds Camilo, F. & Gaensler, B. M.) 139–140 (Astronomical Society of the Pacific, 2004).

  • Karachentsev, I. D. The native group and different neighboring galaxy teams. Astron. J. 129, 178–188 (2005).

    ADS 
    CAS 

    Google Scholar 

  • Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of mud infrared emission to be used in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998).

    ADS 

    Google Scholar 

  • AP Source: Biden taps Ketanji Brown Jackson for high court


    Decide Ketanji Brown Jackson, a U.S. Circuit Decide on the U.S. Court docket of Appeals for the District of Columbia Circuit, poses for a portrait, Feb. 18, in her workplace on the courtroom in Washington. President Biden on Friday will nominate her to the Supreme Court docket, in response to an individual acquainted with the matter. (Jacquelyn Martin, Related Press)

    Estimated learn time: Lower than a minute

    WASHINGTON — President Joe Biden on Friday will nominate federal appeals courtroom Decide Ketanji Brown Jackson to the Supreme Court docket, in response to an individual acquainted with the matter, making her the primary Black lady chosen to serve on a courtroom that after declared her race unworthy of citizenship and endorsed segregation.

    In Jackson, Biden delivers on a marketing campaign promise to make the historic appointment and to additional diversify a courtroom that was made up fully of white males for nearly two centuries. He has chosen an lawyer who can be the excessive courtroom’s first former public defender, although she additionally possesses the elite authorized background of different justices.

    Jackson can be the present courtroom’s second Black justice — Justice Clarence Thomas, a conservative, is the opposite — and simply the third in historical past.

    The information was confirmed by an individual acquainted with the matter who spoke on the situation of anonymity to debate it earlier than the president’s official announcement later Friday.

    That is growing information and will probably be up to date.

    Photographs

    Colleen Lengthy, Michael Balsamo and Zeke Miller

    Extra tales chances are you’ll be keen on