Emergent constraints on future precipitation changes


  • Collins, M. et al. in Local weather Change 2013: The Bodily Science Foundation (eds Stocker, T. F. et al.) Ch. 12 (Cambridge Univ. Press, 2013).

  • Corridor, A. et al. Progressing emergent constraints on future local weather change. Nat. Clim. Change 9, 269–278 (2019).

    ADS 
    Article 

    Google Scholar 

  • Brient, F. Decreasing uncertainties in local weather projections with emergent constraints: ideas, examples and prospects. Adv. Atmos. Sci. 37, 1–15 (2020).

    Article 

    Google Scholar 

  • Allen, M. & Ingram, W. Constraints on future modifications in local weather and the hydrologic cycle. Nature 419, 228–232 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Schlund, M. et al. Emergent constraints on equilibrium local weather sensitivity in CMIP5: do they maintain for CMIP6? Earth Syst. Dyn. 11, 1233–1258 (2020).

    ADS 
    Article 

    Google Scholar 

  • Taylor, Ok. E., Stouffer, R. J. & Meehl, G. A. An summary of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    ADS 
    Article 

    Google Scholar 

  • Eyring, V. et al. Overview of the Coupled Mannequin Intercomparison Venture section 6 (CMIP6) experimental design and group. Geosci. Mannequin Dev. 9, 1937–1958 (2016).

    ADS 
    Article 

    Google Scholar 

  • O’Neill, B. C. et al. A brand new state of affairs framework for local weather change analysis: the idea of shared socioeconomic pathways. Climatic Change 122, 387–400 (2014).

    ADS 
    Article 

    Google Scholar 

  • Knutti, R. The top of mannequin democracy? Climatic Change 102, 395–404 (2010).

    ADS 
    Article 

    Google Scholar 

  • Shiogama, H. et al. Observational constraints point out danger of drying within the Amazon Basin. Nat. Commun. 2, 253 (2011).

    ADS 
    Article 

    Google Scholar 

  • Caldwell, P. M. et al. Statistical significance of local weather sensitivity predictors obtained by information mining. Geophys. Res. Lett. 41, 1803–1808 (2014).

    ADS 
    Article 

    Google Scholar 

  • Samset, B. H. et al. Quick and gradual precipitation responses to particular person local weather forcers: a PDRMIP multimodel examine. Geophys. Res. Lett. 43, 2782–2791 (2016).

    ADS 
    Article 

    Google Scholar 

  • Thorpe, L. & Andrews, T. The bodily drivers of historic and twenty first century international precipitation modifications. Environ. Res. Lett. 9, 064024 (2014).

    ADS 
    Article 

    Google Scholar 

  • Salzmann, M. World warming with out international imply precipitation enhance? Sci. Adv. 2, e1501572 (2016).

    ADS 
    Article 

    Google Scholar 

  • Wu, P., Christidis, N. & Stott, P. Anthropogenic impression on Earth’s hydrological cycle. Nat. Clim. Change 3, 807–810 (2013).

    ADS 
    Article 

    Google Scholar 

  • Rao, S. et al. Future air air pollution within the shared socio-economic pathways. Glob. Environ. Change 42, 346–358 (2017).

    Article 

    Google Scholar 

  • Lund, M. T., Myhre, G. & Samset, B. H. Anthropogenic aerosol forcing underneath the shared socioeconomic pathways. Atmos. Chem. Phys. 19, 13827–13839 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Fläschner, D., Mauritsen, T. & Stevens, B. Understanding the intermodel unfold in global-mean hydrological sensitivity. J. Clim. 29, 801–817 (2016).

    ADS 
    Article 

    Google Scholar 

  • DeAngelis, A. M., Qu, X., Zelinka, M. D. & Corridor, A. An observational radiative constraint on hydrologic cycle intensification. Nature 528, 249–253 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Watanabe, M. et al. Low clouds hyperlink equilibrium local weather sensitivity to hydrological sensitivity. Nat. Clim. Change 8, 901–906 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Pendergrass, A. G. The worldwide-mean precipitation response to CO2-induced warming in CMIP6 fashions. Geophys. Res. Lett. 47, e2020GL089964 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Jiménez-de-la-Cuesta, D. & Mauritsen, T. Emergent constraints on Earth’s transient and equilibrium response to doubled CO2 from post-Nineteen Seventies international warming. Nat. Geosci. 12, 902–905 (2019).

    ADS 
    Article 

    Google Scholar 

  • Tokarska, Ok. B. et al. Previous warming pattern constrains future warming in CMIP6 fashions. Sci. Adv. 6, eaaz9549 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Nijsse, F. J. M. M., Cox, P. M. & Williamson, M. S. Emergent constraints on transient local weather response (TCR) and equilibrium local weather sensitivity (ECS) from historic warming in CMIP5 and CMIP6 fashions. Earth Syst. Dyn. 11, 737–750 (2020).

    ADS 
    Article 

    Google Scholar 

  • Liang, Y., Gillett, N. P. & Monahan, A. H. Local weather mannequin projections of twenty first century international warming constrained utilizing the noticed warming pattern. Geophys. Res. Lett. 47, e2019GL086757 (2020).

    ADS 

    Google Scholar 

  • Hegerl, G. C. et al. Challenges in quantifying modifications within the international water cycle. Bull. Am. Meteorol. Soc. 96, 1097–1115 (2015).

    ADS 
    Article 

    Google Scholar 

  • Bowman, Ok. W., Cressie, N., Qu, X. & Corridor, A. A hierarchical statistical framework for emergent constraints: software to snow-albedo suggestions. Geophys. Res. Lett. 45, 13050–13059 (2018).

    ADS 

    Google Scholar 

  • Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in international and regional temperature change utilizing an ensemble of observational estimates: the HadCRUT4 dataset. J. Geophys. Res. 117, D08101 (2012).

    ADS 

    Google Scholar 

  • Lenssen, N. et al. Enhancements within the GISTEMP uncertainty mannequin. J. Geophys. Res. Atmos. 124, 6307–6326 (2019).

    ADS 
    Article 

    Google Scholar 

  • Gillett, N. P. et al. The Detection and Attribution Mannequin Intercomparison Venture (DAMIP v1.0) contribution to CMIP6. Geosci. Mannequin Dev. 9, 3685–3697 (2016).

    ADS 
    Article 

    Google Scholar 

  • Gillett, N. P. et al. Constraining human contributions to noticed warming since preindustrial. Nat. Clim. Change 11, 207–212 (2021).

    ADS 
    Article 

    Google Scholar 

  • Solar, Q. et al. A evaluation of worldwide precipitation information units: information sources, estimation, and intercomparisons. Rev. Geophys. 56, 79–107 (2018).

    ADS 
    Article 

    Google Scholar 

  • Kobayashi, S. et al. The JRA-55 reanalysis: normal specs and primary traits. J. Meteorol. Soc. Jpn 93, 5–48 (2015).

    ADS 
    Article 

    Google Scholar 

  • Adler, R. et al. The World Precipitation Climatology Venture (GPCP) month-to-month evaluation (new model 2.3) and a evaluation of 2017 international precipitation. Environment 9, 138 (2018).

    ADS 
    Article 

    Google Scholar 

  • Beck, H. E. et al. MSWEP V2 international 3‑hourly 0.1° precipitation: methodology and quantitative evaluation. Bull. Am. Meteorol. Soc. 100, 473–500 (2019).

    ADS 
    Article 

    Google Scholar 

  • van den Hurk, B. et al. LS3MIP (v1.0) contribution to CMIP6: the Land Floor, Snow and Soil moisture Mannequin Intercomparison Venture—goals, setup and anticipated final result. Geosci. Mannequin Dev. 9, 2809–2832 (2016).

    ADS 
    Article 

    Google Scholar 

  • Becker, A. et al. An outline of the worldwide land-surface precipitation information merchandise of the World Precipitation Climatology Centre with pattern purposes together with centennial (pattern) evaluation from 1901–current. Earth Syst. Sci. Information 5, 71–99 (2013).

    ADS 
    Article 

    Google Scholar 

  • Emori, S. & Brown, S. J. Dynamic and thermodynamic modifications in imply and excessive precipitation underneath modified local weather. Geophys. Res. Lett. 32, L17706 (2005).

    ADS 
    Article 

    Google Scholar 

  • Xie, P. & Arkin, P. A. World precipitation: a 17-year month-to-month evaluation primarily based on gauge observations, satellite tv for pc estimates, and numerical mannequin outputs. Bull. Am. Meteorol. Soc. 78, 2539–2558 (1997).

    ADS 
    Article 

    Google Scholar 

  • Yin, X. A. & Gruber Arkin, P. Comparability of the GPCP and CMAP merged gauge–satellite tv for pc month-to-month precipitation merchandise for the interval 1979–2001. J. Hydrometeorol. 5, 1207–1222 (2004).

    ADS 
    Article 

    Google Scholar 

  • Compo, G. P. et al. The Twentieth Century Reanalysis Venture. Q. J. R. Meteorol. Soc. A 137, 1–28 (2011).

    ADS 
    Article 

    Google Scholar 

  • Kim, H. World Soil Wetness Venture Section 3 atmospheric boundary circumstances (experiment 1) (DIAS, 2017); https://doi.org/10.20783/DIAS.501

  • Schneider, U. et al. GPCC Full Information Month-to-month Product Model 2020 at 1.0°: Month-to-month Land-Floor Precipitation from Rain-Gauges Constructed on GTS-Based mostly and Historic Information (2020); https://doi.org/10.5676/DWD_GPCC/FD_M_V2020_100

  • Leave a Reply

    Your email address will not be published. Required fields are marked *