Tan, C. et al. Latest advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).
Google Scholar
Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered supplies. Science 340, 1226419 (2013).
Hernandez, Y. et al. Excessive-yield manufacturing of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008).
Google Scholar
Kory, M. J. et al. Gram-scale synthesis of two-dimensional polymer crystals and their construction evaluation by X-ray diffraction. Nat. Chem. 6, 779–784 (2014).
Google Scholar
Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered supplies. Science 331, 568–571 (2011).
Google Scholar
Li, J. et al. Printable two-dimensional superconducting monolayers. Nat. Mater. 20, 181–187 (2021).
Google Scholar
Puthirath Balan, A. et al. Exfoliation of a non-van der Waals materials from iron ore hematite. Nat. Nanotechnol. 13, 602–609 (2018).
Google Scholar
Varoon, Okay. et al. Dispersible exfoliated zeolite nanosheets and their software as a selective membrane. Science 334, 72–75 (2011).
Google Scholar
Peng, Y. et al. Metallic-organic framework nanosheets as constructing blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).
Google Scholar
Nicks, J., Boer, S. A., White, N. G. & Foster, J. A. Monolayer nanosheets fashioned by liquid exfoliation of charge-assisted hydrogen-bonded frameworks. Chem. Sci. 12, 3322–3327 (2021).
Google Scholar
Novoselov, Okay. S. et al. Electrical discipline impact in atomically skinny carbon movies. Science 306, 666–669 (2004).
Google Scholar
Huang, P. Y. et al. Imaging atomic rearrangements in two-dimensional silica glass: watching silica’s dance. Science 342, 224–227 (2013).
Google Scholar
Wasio, N. A. et al. Self-assembly of hydrogen-bonded two-dimensional quasicrystals. Nature 507, 86–89 (2014).
Google Scholar
Suzuki, Y. et al. Self-assembly of coherently dynamic, auxetic, two-dimensional protein crystals. Nature 533, 369–373 (2016).
Google Scholar
Xing, L. B., Peng, Z. T., Li, W. T. & Wu, Okay. On controllability and applicability of floor molecular self-assemblies. Acc. Chem. Res. 52, 1048–1058 (2019).
Google Scholar
Prepare dinner, T. R., Zheng, Y.-R. & Stang, P. J. Metallic–natural frameworks and self-assembled supramolecular coordination complexes: evaluating and contrasting the design, synthesis, and performance of steel–natural supplies. Chem. Rev. 113, 734–777 (2013).
Google Scholar
Olenyuk, B., Whiteford, J. A., Fechtenkötter, A. & Stang, P. J. Self-assembly of nanoscale cuboctahedra by coordination chemistry. Nature 398, 796–799 (1999).
Google Scholar
Fujita, M., Yazaki, J. & Ogura, Okay. Preparation of a macrocyclic polynuclear complicated, [(en)Pd(4,4′-bpy)]4(NO3)8 (en = ethylenediamine, bpy = bipyridine), which acknowledges an natural molecule in aqueous media. J. Am. Chem. Soc. 112, 5645–5647 (1990).
Google Scholar
Fujita, M. et al. Self-assembly of ten molecules into nanometre-sized natural host frameworks. Nature 378, 469–471 (1995).
Google Scholar
Mal, P., Breiner, B., Rissanen, Okay. & Nitschke, J. R. White phosphorus is air-stable inside a self-assembled tetrahedral capsule. Science 324, 1697–1699 (2009).
Google Scholar
Rizzuto, F. J. & Nitschke, J. R. Stereochemical plasticity modulates cooperative binding in a CoII12L6 cuboctahedron. Nat. Chem. 9, 903–908 (2017).
Google Scholar
Yamashina, M. et al. An antiaromatic-walled nanospace. Nature 574, 511–515 (2019).
Google Scholar
Chen, B., Holstein, J. J., Horiuchi, S., Hiller, W. G. & Intelligent, G. H. Pd(II) coordination sphere engineering: pyridine cages, quinoline bowls, and heteroleptic capsules binding one or two fullerenes. J. Am. Chem. Soc. 141, 8907–8913 (2019).
Google Scholar
Yoshizawa, M., Tamura, M. & Fujita, M. Diels-Alder in aqueous molecular hosts: uncommon regioselectivity and environment friendly catalysis. Science 312, 251–254 (2006).
Google Scholar
Kaphan, D. M., Levin, M. D., Bergman, R. G., Raymond, Okay. N. & Toste, F. D. A supramolecular microenvironment technique for transition steel catalysis. Science 350, 1235–1238 (2015).
Google Scholar
Cullen, W., Misuraca, M. C., Hunter, C. A., Williams, N. H. & Ward, M. D. Extremely environment friendly catalysis of the Kemp elimination within the cavity of a cubic coordination cage. Nat. Chem. 8, 231–236 (2016).
Google Scholar
Xuan, W., Zhang, M., Liu, Y., Chen, Z. & Cui, Y. A chiral quadruple-stranded helicate cage for enantioselective recognition and separation. J. Am. Chem. Soc. 134, 6904–6907 (2012).
Google Scholar
Li, G., Yu, W. & Cui, Y. A homochiral nanotubular crystalline framework of metallomacrocycles for enantioselective recognition and separation. J. Am. Chem. Soc. 130, 4582–4583 (2008).
Google Scholar
Liu, T., Liu, Y., Xuan, W. & Cui, Y. Chiral nanoscale steel–natural tetrahedral cages: diastereoselective self-assembly and enantioselective separation. Angew. Chem. Int. Ed. 49, 4121–4124 (2010).
Google Scholar
Dong, J. et al. Self-Meeting of extremely secure zirconium(IV) coordination cages with aggregation induced emission molecular rotors for live-cell imaging. Angew. Chem. Int. Ed. 59, 10151–10159 (2020).
Google Scholar
Solar, Y. et al. Rhomboidal Pt(II) metallacycle-based NIR-II theranostic nanoprobe for tumor prognosis and image-guided remedy. Proc. Natl Acad. Sci. USA 116, 1968–1973 (2019).
Google Scholar
August, D. P. et al. Self-assembly of a layered two-dimensional molecularly woven material. Nature 588, 429–435 (2020).
Google Scholar
Dong, J. et al. Chiral NH-controlled supramolecular metallacycles. J. Am. Chem. Soc. 139, 1554–1564 (2017).
Google Scholar
Backes, C. et al. Equipartition of vitality defines the scale–thickness relationship in liquid-exfoliated nanosheets. ACS Nano 13, 7050–7061 (2019).
Google Scholar
Dou, L. et al. Atomically skinny two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015).
Google Scholar
Dazzi, A. & Prater, C. B. AFM-IR: expertise and purposes in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 117, 5146–5173 (2017).
Google Scholar
Zhang, D. et al. Atomic-resolution transmission electron microscopy of electron beam–delicate crystalline supplies. Science 359, 675–679 (2018).
Google Scholar
Liu, L. et al. Imaging defects and their evolution in a steel–natural framework at sub-unit-cell decision. Nat. Chem. 11, 622–628 (2019).
Google Scholar
Ferrand, Y., Crump, M. P. & Davis, A. P. An artificial lectin analog for biomimetic disaccharide recognition. Science 318, 619–622 (2007).
Google Scholar
Ke, C., Destecroix, H., Crump, M. P. & Davis, A. P. A easy and accessible artificial lectin for glucose recognition and sensing. Nat. Chem. 4, 718–723 (2012).
Google Scholar
Tromans, R. A. et al. A biomimetic receptor for glucose. Nat. Chem. 11, 52–56 (2019).
Google Scholar
Dong, J. et al. Ultrathin two-dimensional porous natural nanosheets with molecular rotors for chemical sensing. Nat. Commun. 8, 1142 (2017).
Google Scholar
Tan, C. et al. Excessive-yield exfoliation of ultrathin two-dimensional ternary chalcogenide nanosheets for extremely delicate and selective fluorescence DNA sensors. J. Am. Chem. Soc. 137, 10430–10436 (2015).
Google Scholar
QSTEM v.2.51 (2018); http://www.qstem.org
Mei, X. & Wolf, C. Enantioselective sensing of chiral carboxylic acids. J. Am. Chem. Soc. 126, 14736–14737 (2004).
Google Scholar