Olsson, T., Barcellos, L. F. & Alfredsson, L. Interactions between genetic, life-style and environmental danger components for a number of sclerosis. Nat. Rev. Neurol. 13, 25–36 (2017).
CAS
PubMed
Google Scholar
Odoardi, F. et al. T cells develop into licensed within the lung to enter the central nervous system. Nature 488, 675–679 (2012).
ADS
CAS
Google Scholar
O’Dwyer, D. N., Dickson, R. P. & Moore, B. B. The lung microbiome, immunity, and the pathogenesis of persistent lung illness. J. Immunol. 196, 4839–4847 (2016).
PubMed
Google Scholar
Jin, C. et al. Commensal microbiota promote lung most cancers growth through γδ T cells. Cell 176, 998–1013 (2019).
CAS
PubMed
PubMed Central
Google Scholar
Yokote, H. et al. NKT cell-dependent amelioration of a mouse mannequin of a number of sclerosis by altering intestine flora. Am. J. Pathol. 173, 1714–1723 (2008).
CAS
PubMed
PubMed Central
Google Scholar
Ochoa-Repáraz, J. et al. Position of intestine commensal microflora within the growth of experimental autoimmune encephalomyelitis. J. Immunol. 183, 6041–6050 (2009).
PubMed
Google Scholar
Berer, Okay. et al. Commensal microbiota and myelin autoantigen cooperate to set off autoimmune demyelination. Nature 479, 538–541 (2011).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Rothhammer, V. et al. Kind I interferons and microbial metabolites of tryptophan modulate astrocyte exercise and central nervous system irritation through the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016).
CAS
PubMed
PubMed Central
Google Scholar
Miyauchi, E. et al. Intestine microorganisms act collectively to exacerbate irritation in spinal cords. Nature 585, 102–106 (2020).
ADS
CAS
PubMed
Google Scholar
Flügel, A., Willem, M., Berkowicz, T. & Wekerle, H. Gene switch into CD4+ T lymphocytes: inexperienced fluorescent protein-engineered, encephalitogenic T cells illuminate mind autoimmune responses. Nat. Med. 5, 843–847 (1999).
PubMed
Google Scholar
Lodygin, D. et al. β-Synuclein-reactive T cells induce autoimmune CNS gray matter degeneration. Nature 566, 503–508 (2019).
ADS
CAS
PubMed
Google Scholar
Bartholomäus, I. et al. Effector T cell interactions with meningeal vascular constructions in nascent autoimmune CNS lesions. Nature 462, 94–98 (2009).
ADS
PubMed
Google Scholar
Kivisäkk, P. et al. Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells throughout experimental autoimmune encephalomyelitis. Ann. Neurol. 65, 457–469 (2009).
PubMed
PubMed Central
Google Scholar
Lodygin, D. et al. A mixture of fluorescent NFAT and H2B sensors uncovers dynamics of T cell activation in actual time throughout CNS autoimmunity. Nat. Med. 19, 784–790 (2013).
CAS
PubMed
Google Scholar
Starossom, S. C. et al. Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity 37, 249–263 (2012).
CAS
PubMed
PubMed Central
Google Scholar
Kawakami, N. et al. The activation standing of neuroantigen-specific T cells within the goal organ determines the scientific end result of autoimmune encephalomyelitis. J. Exp. Med. 199, 185–197 (2004).
CAS
PubMed
PubMed Central
Google Scholar
Odoardi, F. et al. On the spot impact of soluble antigen on effector T cells in peripheral immune organs throughout immunotherapy of autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 104, 920–925 (2007).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Heppner, F. L. et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat. Med. 11, 146–152 (2005).
CAS
PubMed
Google Scholar
Hanisch, U. Okay. & Kettenmann, H. Microglia: energetic sensor and versatile effector cells within the regular and pathologic mind. Nat. Neurosci. 10, 1387–1394 (2007).
CAS
PubMed
Google Scholar
Rock, R. B. et al. Transcriptional response of human microglial cells to interferon-γ. Genes Immun. 6, 712–719 (2005).
CAS
PubMed
Google Scholar
Popovic, N. et al. Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann. Neurol. 51, 215–223 (2002).
CAS
PubMed
Google Scholar
Elmore, M. R. et al. Colony-stimulating issue 1 receptor signaling is important for microglia viability, unmasking a microglia progenitor cell within the grownup mind. Neuron 82, 380–397 (2014).
CAS
PubMed
PubMed Central
Google Scholar
Prinz, M. et al. Distinct and nonredundant in vivo capabilities of IFNAR on myeloid cells restrict autoimmunity within the central nervous system. Immunity 28, 675–686 (2008).
CAS
Google Scholar
Khorooshi, R. et al. Induction of endogenous kind I interferon throughout the central nervous system performs a protecting position in experimental autoimmune encephalomyelitis. Acta Neuropathol. 130, 107–118 (2015).
CAS
PubMed
PubMed Central
Google Scholar
McNab, F., Mayer-Barber, Okay., Sher, A., Wack, A. & O’Garra, A. Kind I interferons in infectious illness. Nat. Rev. Immunol. 15, 87–103 (2015).
CAS
PubMed
PubMed Central
Google Scholar
Bradley, Okay. C. et al. Microbiota-driven tonic interferon alerts in lung stromal cells shield from influenza virus an infection. Cell Rep. 28, 245–256 (2019).
CAS
PubMed
Google Scholar
d’Hennezel, E., Abubucker, S., Murphy, L. O. & Cullen, T. W. Complete lipopolysaccharide from the human intestine microbiome silences toll-like receptor signaling. mSystems 2, e00046-17 (2017).
PubMed
PubMed Central
Google Scholar
Yang, D. et al. Dysregulated lung commensal micro organism drive interleukin-17B manufacturing to advertise pulmonary fibrosis by their outer membrane vesicles. Immunity 50, 692–706 (2019).
CAS
PubMed
Google Scholar
Bhor, V. M., Thomas, C. J., Surolia, N. & Surolia, A. Polymyxin B: an ode to an outdated antidote for endotoxic shock. Mol. Biosyst. 1, 213–222 (2005).
CAS
PubMed
Google Scholar
Vargas-Caraveo, A. et al. Lipopolysaccharide enters the rat mind by a lipoprotein-mediated transport mechanism in physiological circumstances. Sci. Rep. 7, 13113 (2017).
ADS
PubMed
PubMed Central
Google Scholar
Sandiego, C. M. et al. Imaging sturdy microglial activation after lipopolysaccharide administration in people with PET. Proc. Natl Acad. Sci. USA 112, 12468–12473 (2015).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Dickson, R. P., Erb-Downward, J. R., Martinez, F. J. & Huffnagle, G. B. The microbiome and the respiratory tract. Annu. Rev. Physiol 78, 481–504 (2016).
CAS
PubMed
Google Scholar
Belkaid, Y. & Hand, T. W. Position of the microbiota in immunity and irritation. Cell 157, 121–141 (2014).
CAS
PubMed
PubMed Central
Google Scholar
Erny, D. et al. Host microbiota continually management maturation and performance of microglia within the CNS. Nat. Neurosci. 18, 965–977 (2015).
CAS
PubMed
PubMed Central
Google Scholar
Braniste, V. et al. The intestine microbiota influences blood–mind barrier permeability in mice. Sci. Transl. Med. 6, 263ra158 (2014).
PubMed
PubMed Central
Google Scholar
Wang, Y. et al. An intestinal commensal symbiosis issue controls neuroinflammation through TLR2-mediated CD39 signalling. Nat. Commun. 5, 4432 (2014).
ADS
CAS
PubMed
Google Scholar
Luu, M. et al. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat. Commun. 10, 760 (2019).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Sonner, J. Okay. et al. Dietary tryptophan hyperlinks encephalogenicity of autoreactive T cells with intestine microbial ecology. Nat. Commun. 10, 4877 (2019).
ADS
PubMed
PubMed Central
Google Scholar
Jakimovski, D., Kolb, C., Ramanathan, M., Zivadinov, R. & Weinstock-Guttman, B. Interferon β for a number of sclerosis. Chilly Spring Harb. Perspect. Med. 8, a032003 (2018).
CAS
PubMed
PubMed Central
Google Scholar
Guo, B., Chang, E. Y. & Cheng, G. The kind I IFN induction pathway constrains Th17-mediated autoimmune irritation in mice. J. Clin. Make investments. 118, 1680–1690 (2008).
CAS
PubMed
PubMed Central
Google Scholar
Bauer, H., Horowitz, R. E., Levenson, S. M. & Popper, H. The response of the lymphatic tissue to the microbial flora. Research on germfree mice. Am. J. Pathol. 42, 471–483 (1963).
CAS
PubMed
PubMed Central
Google Scholar
Smith, Okay., McCoy, Okay. D. & Macpherson, A. J. Use of axenic animals in learning the variation of mammals to their commensal intestinal microbiota. Semin. Immunol. 19, 59–69 (2007).
CAS
PubMed
Google Scholar
Kennedy, E. A., King, Okay. Y. & Baldridge, M. T. Mouse microbiota fashions: evaluating germ-free mice and antibiotics therapy as instruments for modifying intestine micro organism. Entrance. Physiol. 9, 1534 (2018).
PubMed
PubMed Central
Google Scholar
Wypych, T. P., Wickramasinghe, L. C. & Marsland, B. J. The affect of the microbiome on respiratory well being. Nat. Immunol. 20, 1279–1290 (2019).
CAS
PubMed
Google Scholar
Balmer, M. L. et al. The liver might act as a firewall mediating mutualism between the host and its intestine commensal microbiota. Sci. Transl. Med. 6, 237ra266 (2014).
Google Scholar
Määttä, J. A., Coffey, E. T., Hermonen, J. A., Salmi, A. A. & Hinkkanen, A. E. Detection of myelin fundamental protein isoforms by natural focus. Biochem. Biophys. Res. Commun. 238, 498–502 (1997).
PubMed
Google Scholar
Murray, C. et al. Interdependent and unbiased roles of kind I interferons and IL-6 in innate immune, neuroinflammatory and illness behaviour responses to systemic poly I:C. Mind Behav. Immun. 48, 274–286 (2015).
CAS
PubMed
PubMed Central
Google Scholar
Rittirsch, D. et al. Acute lung damage induced by lipopolysaccharide is unbiased of complement activation. J. Immunol. 180, 7664–7672 (2008).
CAS
PubMed
Google Scholar
Klindworth, A. et al. Analysis of basic 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based variety research. Nucleic Acids Res. 41, e1 (2013).
CAS
PubMed
PubMed Central
Google Scholar
von Hoyningen-Huene, A. J. E. et al. Bacterial succession alongside a sediment porewater gradient at Lake Neusiedl in Austria. Sci. Information 6, 163 (2019).
Google Scholar
Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a flexible open supply device for metagenomics. PeerJ 4, e2584 (2016).
PubMed
PubMed Central
Google Scholar
Yilmaz, P. et al. The SILVA and “All-species Dwelling Tree Challenge (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2014).
CAS
PubMed
Google Scholar
Quast, C. et al. The SILVA ribosomal RNA gene database challenge: improved information processing and web-based instruments. Nucleic Acids Res. 41, D590–D596 (2013).
CAS
PubMed
Google Scholar
Chen, L. et al. GMPR: a sturdy normalization methodology for zero-inflated depend information with software to microbiome sequencing information. PeerJ 6, e4600 (2018).
PubMed
PubMed Central
Google Scholar
Andersen, Okay. S., Kirkegaard, R. H., Karst, S. M. & Albertsen, M. ampvis2: an R bundle to analyse and visualise 16S rRNA amplicon information. Preprint at https://doi.org/10.1101/299537 (2018).
Wickham, H. ggplot2: Elegant Graphics for Information Evaluation (Springer, 2016).
Schläger, C. et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530, 349–353 (2016).
ADS
PubMed
Google Scholar
Cabeza, R. et al. An RNA sequencing transcriptome evaluation reveals novel insights into molecular elements of the nitrate impression on the nodule exercise of Medicago truncatula. Plant Physiol. 164, 400–411 (2014).
CAS
PubMed
Google Scholar
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq information with DESeq2. Genome Biol. 15, 550 (2014).
PubMed
PubMed Central
Google Scholar
Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative evaluation of enormous gene lists utilizing DAVID bioinformatics sources. Nat. Protoc. 4, 44–57 (2009).
CAS
Google Scholar
Doorn, Okay. J. et al. Mind region-specific gene expression profiles in freshly remoted rat microglia. Entrance. Cell. Neurosci. 9, 84 (2015).
PubMed
PubMed Central
Google Scholar
Klinkert, W. E. et al. TNF-α receptor fusion protein prevents experimental auto-immune encephalomyelitis and demyelination in Lewis rats: an outline. J. Neuroimmunol. 72, 163–168 (1997).
CAS
PubMed
Google Scholar