Südhof, T. C. In direction of an understanding of synapse formation. Neuron 100, 276–293 (2018).
Google Scholar
Zipursky, S. L. & Sanes, J. R. Chemoaffinity revisited: dscams, protocadherins, and neural circuit meeting. Cell 143, 343–353 (2010).
Google Scholar
Hassan, B. A. & Hiesinger, P. R. Past molecular codes: easy guidelines to wire advanced brains. Cell 163, 285–291 (2015).
Google Scholar
Li, H. et al. Classifying Drosophila olfactory projection neuron subtypes by single-cell RNA sequencing. Cell 171, 1206–1220 (2017).
Google Scholar
Özel, M. N. et al. Neuronal variety and convergence in a visible system developmental atlas. Nature 589, 88–95 (2020).
Google Scholar
Hobert, O. Terminal selectors of neuronal identification. Curr. Prime. Devel. Biol. 116, 455–475 (2016).
Google Scholar
Hong, W. & Luo, L. Genetic management of wiring specificity within the fly olfactory system. Genetics 196, 17–29 (2014).
Google Scholar
Dasen, J. S. & Jessell, T. M. Hox networks and the origins of motor neuron variety. Curr. Prime. Devel. Biol. 88, 169–200 (2009).
Google Scholar
Larkin, A. et al. FlyBase: updates to the Drosophila melanogaster information base. Nucleic Acids Res. 49, D899–D907 (2020).
Google Scholar
Scheffer, L. Okay. et al. A connectome and evaluation of the grownup Drosophila central mind. eLife 9, e57443 (2020).
Google Scholar
Kurmangaliyev, Y. Z., Yoo, J., Valdes-Aleman, J., Sanfilippo, P. & Zipursky, S. L. Transcriptional packages of circuit meeting within the Drosophila visible system. Neuron 108, 1045–1057 (2020).
Google Scholar
Reilly, M. B., Cros, C., Varol, E., Yemini, E. & Hobert, O. Distinctive homeobox codes delineate all of the neuron lessons of C. elegans. Nature 584, 595–601 (2020).
Google Scholar
Truman, J. W., Talbot, W. S., Fahrbach, S. E. & Hogness, D. S. Ecdysone receptor expression within the CNS correlates with stage-specific responses to ecdysteroids throughout Drosophila and Manduca growth. Improvement 120, 219–234 (1994).
Google Scholar
Riddiford, L. M., Cherbas, P. & Truman, J. W. Ecdysone receptors and their organic actions. Vitam. Horm. 60, 1–73 (2000).
Google Scholar
Agawa, Y. et al. Drosophila Blimp-1 is a transient transcriptional repressor that controls timing of the ecdysone-induced developmental pathway. Mol. Cell. Biol. 27, 8739–8747 (2007).
Google Scholar
Pak, M. D. & Gilbert, L. I. A developmental evaluation of ecdysteroids in the course of the metamorphosis of extit Drosophila melanogaster. J. Liq. Chromatogr. 10, 2591–2611 (1987).
Google Scholar
Rabinovich, D., Yaniv, S. P., Alyagor, I. & Schuldiner, O. Nitric oxide as a switching mechanism between axon degeneration and regrowth throughout developmental reworking. Cell 164, 170–182 (2016).
Google Scholar
Shlyueva, D. et al. Hormone-responsive enhancer-activity maps reveal predictive motifs, oblique repression, and concentrating on of closed chromatin. Mol. Cell 54, 180–192 (2014).
Google Scholar
Cherbas, L., Hu, X., Zhimulev, I., Belyaeva, E. & Cherbas, P. EcR isoforms in Drosophila: testing tissue-specific necessities by focused blockade and rescue. Improvement 130, 271–284 (2003).
Google Scholar
Xu, C. et al. Management of synaptic specificity by establishing a relative desire for synaptic companions. Neuron 103, 865–877 (2019).
Google Scholar
Nern, A., Zhu, Y. & Zipursky, S. L. Native N-cadherin interactions mediate distinct steps within the concentrating on of lamina neurons. Neuron 58, 34–41 (2008).
Google Scholar
Fisher, Y. E. et al. FlpStop, a device for conditional gene management in Drosophila. eLife 6, e22279 (2017).
Google Scholar
Bender, M., Imam, F. B., Talbot, W. S., Ganetzky, B. & Hogness, D. S. Drosophila ecdysone receptor mutations reveal purposeful variations amongst receptor isoforms. Cell 91, 777–788 (1997).
Google Scholar
Yao, T. P. et al. Useful ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature 366, 476–479 (1993).
Google Scholar
Schwabe, T., Borycz, J. A., Meinertzhagen, I. A. & Clandinin, T. R. Differential adhesion determines the group of synaptic fascicles within the Drosophila visible system. Curr. Biol. 24, 1304–1313 (2014).
Google Scholar
White, Okay. P., Hurban, P., Watanabe, T. & Hogness, D. S. Coordination of Drosophila metamorphosis by two ecdysone-induced nuclear receptors. Science 276, 114–117 (1997).
Google Scholar
Takemura, S. et al. Synaptic circuits and their variations inside totally different columns within the visible system of Drosophila. Proc. Natl Acad. Sci. USA 112, 13711–13716 (2015).
Google Scholar
Tan, L. et al. Ig superfamily ligand and receptor pairs expressed in synaptic companions in Drosophila. Cell 163, 1756–1769 (2015).
Google Scholar
Lee, C. W. & Peng, H. B. The operate of mitochondria in presynaptic growth on the neuromuscular junction. Mol. Biol. Cell 19, 150–158 (2008).
Google Scholar
Rangaraju, V., Lauterbach, M. & Schuman, E. M. Spatially steady mitochondrial compartments gasoline native translation throughout plasticity. Cell 176, 73–84 (2019).
Google Scholar
Gowrisankaran, S. & Milosevic, I. Regulation of synaptic vesicle acidification on the neuronal synapse. IUBMB Life 72, 568–576 (2020).
Google Scholar
Özel, M. N., Langen, M., Hassan, B. A. & Hiesinger, P. R. Filopodial dynamics and development cone stabilization in Drosophila visible circuit growth. eLife 4, e10721 (2015).
Google Scholar
Peng, J. et al. Drosophila Fezf coordinates laminar-specific connectivity by means of cell-intrinsic and cell-extrinsic mechanisms. eLife 7, e33962 (2018).
Google Scholar
Akin, O. & Zipursky, S. L. Frazzled promotes development cone attachment on the supply of a Netrin gradient within the Drosophila visible system. eLife 5, e20762 (2016).
Google Scholar
Moffatt, N. S. C., Bruinsma, E., Uhl, C., Obermann, W. M. J. & Toft, D. Position of the cochaperone Tpr2 in Hsp90 chaperoning. Biochemistry 47, 8203–8213 (2008).
Google Scholar
Suzuki, M., Suzuki, H., Sugimoto, Y. & Sugiyama, Y. ABCG2 transports sulfated conjugates of steroids and xenobiotics. J. Biol. Chem. 278, 22644–22649 (2003).
Google Scholar
Alyagor, I. et al. Combining developmental and perturbation-Seq uncovers transcriptional modules orchestrating neuronal reworking. Dev. Cell 47, 38–52 (2018).
Google Scholar
Uyehara, C. M. & McKay, D. J. Direct and widespread function for the nuclear receptor EcR in mediating the response to ecdysone in Drosophila. Proc. Natl Acad. Sci. USA 116, 9893–9902 (2019).
Google Scholar
Syed, M. H., Mark, B. & Doe, C. Q. Steroid hormone induction of temporal gene expression in Drosophila mind neuroblasts generates neuronal and glial variety. eLife 6, e26287 (2017).
Google Scholar
Altmann, C. R. & Brivanlou, A. H. Neural patterning within the vertebrate embryo. Int. Rev. Cytol. 203, 447–482 (2001).
Google Scholar
Briscoe, J. & Small, S. Morphogen guidelines: design rules of gradient-mediated embryo patterning. Improvement 142, 3996–4009 (2015).
Google Scholar
Gaunt, S. J. Hox cluster genes and collinearities all through the tree of animal life. Int. J. Dev. Biol. 62, 673–683 (2018).
Google Scholar
Miranda, A. & Sousa, N. Maternal hormonal milieu affect on fetal mind growth. Mind Behav. 8, e00920 (2018).
Google Scholar
Akin, O. & Zipursky, S. L. Exercise regulates mind growth within the fly. Curr. Opin. Genet. Dev. 65, 8–13 (2020).
Google Scholar
Ting, C.-Y. et al. Photoreceptor-derived activin promotes dendritic termination and restricts the receptive fields of first-order interneurons in Drosophila. Neuron 81, 830–846 (2014).
Google Scholar
Mizumoto, Okay. & Shen, Okay. Two Wnts instruct topographic synaptic innervation in C. elegans. Cell Rep. 5, 389–396 (2013).
Google Scholar
Umemori, H., Linhoff, M. W., Ornitz, D. M. & Sanes, J. R. FGF22 and its shut family members are presynaptic organizing molecules within the mammalian mind. Cell 118, 257–270 (2004).
Google Scholar
Picelli, S. et al. Full-length RNA-seq from single cells utilizing Good-seq2. Nat. Protoc. 9, 171–181 (2014).
Google Scholar
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for quick and delicate epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome place. Nat. Strategies 10, 1213–1218 (2013).
Google Scholar
Ambrosini, G., Groux, R. & Bucher, P. PWMScan: a quick device for scanning whole genomes with a position-specific weight matrix. Bioinformatics 34, 2483–2484 (2018).
Google Scholar
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic knowledge throughout totally different situations, applied sciences, and species. Nat. Biotechnol. 36, 411–420 (2018).
Google Scholar
Xu, S. et al. Interactions between the Ig-superfamily proteins DIP-α and Dpr6/10 regulate meeting of neural circuits. Neuron 100, 1369–1384 (2018).
Google Scholar
Santiago, I. J. et al. Drosophila Fezf features as a transcriptional repressor to direct layer-specific synaptic connectivity within the fly visible system. Proc. Natl Acad. Sci USA 118, e2025530118 (2021).
Google Scholar