Observed poleward freshwater transport since 1970


  • Trenberth, Ok. E., Smith, L., Qian, T., Dai, A. & Fasullo, J. Estimates of the worldwide water price range and its annual cycle utilizing observational and mannequin knowledge. J. Hydrometeorol. 8, 758–769 (2007).

    ADS 
    Article 

    Google Scholar 

  • Schanze, J. J., Schmitt, R. W. & Yu, L. L. The worldwide oceanic freshwater cycle: a state-of-the-art quantification. J. Mar. Res. 68, 569–595 (2010).

    Article 

    Google Scholar 

  • Hegerl, G. C. et al. Challenges in quantifying modifications within the world water cycle. Bull. Am. Meteorol. Soc. 96, 1097–1115 (2015).

    ADS 
    Article 

    Google Scholar 

  • Grist, J. P., Josey, S. A., Zika, J. D., Evans, D. G. & Skliris, N. Assessing latest air-sea freshwater flux modifications utilizing a floor temperature-salinity house framework. J. Geophys. Res. Oceans 121, 8787–8806 (2016).

    ADS 
    Article 

    Google Scholar 

  • Durack, P. J., Wijffels, S. E. & Boyer, T. P. In Ocean Circulation and Local weather: a twenty first Century Perspective Vol. 103 (eds Siedler, G. et al.) Ch. 28, 727–757 (2013).

  • Yu, L., Josey, S. A., Bingham, F. M. & Lee, T. Intensification of the worldwide water cycle and proof from ocean salinity: a synthesis evaluate. Ann. N. Y. Acad. Sci. 1472, 76–94 (2020).

    ADS 
    Article 

    Google Scholar 

  • Durack, P. J., Wijffels, S. E. & Matear, R. J. Ocean salinities reveal robust world water cycle intensification throughout 1950 to 2000. Science 336, 455–458 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Zika, J. D. et al. Improved estimates of water cycle change from ocean salinity: the important thing function of ocean warming. Environ. Res. Lett. 13, 074036 (2018).

    ADS 
    Article 

    Google Scholar 

  • Helm, Ok. P., Bindoff, N. L. & Church, J. A. Adjustments within the world hydrological‐cycle inferred from ocean salinity. Geophys. Res. Lett. 37, L18701, (2010).

  • Skliris, N., Zika, J. D., Nurser, G., Josey, S. A. & Marsh, R. International water cycle amplifying at lower than the Clausius-Clapeyron charge. Sci. Rep. 6, 38752 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Held, I. M. & Soden, B. J. Strong responses of the hydrological cycle to world warming. J. Clim. 19, 5686–5699 (2006).

    ADS 
    Article 

    Google Scholar 

  • Skliris, N. et al. Salinity modifications on the planet ocean since 1950 in relation to altering floor freshwater fluxes. Clim. Dyn. 43, 709–736 (2014).

    Article 

    Google Scholar 

  • Allan, R. P. et al. Advances in understanding massive‐scale responses of the water cycle to local weather change. Ann. N. Y. Acad. Sci. 1472, 49–75 (2020).

    ADS 
    Article 

    Google Scholar 

  • Cheng, L. et al. Improved estimates of modifications in higher ocean salinity and the hydrological cycle. J. Clim. 33, 10357–10381 (2020).

    ADS 
    Article 

    Google Scholar 

  • Boyer, T. P., Levitus, S., Antonov, J. I., Locarnini, R. A. & Garcia, H. E. Linear traits in salinity for the world ocean, 1955–1998. Geophys. Res. Lett. https://doi.org/10.1029/2004gl021791 (2005).

  • Silvy, Y., Guilyardi, E., Sallée, J.-B. & Durack, P. J. Human-induced modifications to the worldwide ocean water lots and their time of emergence. Nat. Clim. Change https://doi.org/10.1038/s41558-020-0878-x (2020).

  • Worthington, L. V. In Evolution of Bodily Oceanography: Scientific Surveys in Honor of Henry Stommel Vol. 1 (eds Warren, B. A. & Wunsch, C.) Ch. 2, 42–57 (MIT Press, 1981).

  • Zika, J. D. et al. Upkeep and broadening of the ocean’s salinity distribution by the water cycle. J. Clim. 28, 9550–9560 (2015).

    ADS 
    Article 

    Google Scholar 

  • Bindoff, N. L. & McDougall, T. J. Diagnosing local weather change and ocean air flow utilizing hydrographic knowledge. J. Phys. Oceanogr. 24, 1137–1152 (1994).

    ADS 
    Article 

    Google Scholar 

  • Sohail, T., Irving, D. B., Zika, J. D., Holmes, R. M. & Church, J. A. Fifty 12 months traits in world ocean warmth content material traced to floor warmth fluxes within the sub‐polar ocean. Geophys. Res. Lett. 48, e2020GL091439 (2021).

  • Cheng, L. & Zhu, J. Advantages of CMIP5 multimodel ensemble in reconstructing historic ocean subsurface temperature variations. J. Clim. 29, 5393–5416 (2016).

    ADS 
    Article 

    Google Scholar 

  • Ishii, M., Shouji, A., Sugimoto, S. & Matsumoto, T. Goal analyses of sea‐floor temperature and marine meteorological variables for the twentieth century utilizing ICOADS and the Kobe Assortment. Int. J. Climatol. 25, 865–879 (2005).

    Article 

    Google Scholar 

  • Good, S. A., Martin, M. J. & Rayner, N. A. EN4: high quality managed ocean temperature and salinity profiles and month-to-month goal analyses with uncertainty estimates. J. Geophys. Res. Oceans 118, 6704–6716 (2013).

    ADS 
    Article 

    Google Scholar 

  • Eyring, V. et al. Overview of the Coupled Mannequin Intercomparison Undertaking Section 6 (CMIP6) experimental design and group. Geosci. Mannequin Dev. 9, 1937–1958 (2016).

    ADS 
    Article 

    Google Scholar 

  • Gillett, N. P. et al. The Detection and Attribution Mannequin Intercomparison Undertaking (DAMIP v1.0) contribution to CMIP6. Geosci. Mannequin Dev. 9, 3685–3697 (2016).

    ADS 
    Article 

    Google Scholar 

  • Hersbach, H. et al. The ERA5 world reanalysis. Q. J. R. Meteorolog. Soc. 146, 1999–2049 (2020).

    ADS 
    Article 

    Google Scholar 

  • Irving, D., Hobbs, W., Church, J. & Zika, J. A mass and vitality conservation evaluation of drift within the CMIP6 ensemble. J. Clim. 34, 3157–3170 (2020).

    ADS 

    Google Scholar 

  • Cai, W., Cowan, T., Arblaster, J. M. & Wijffels, S. On potential causes for an below‐estimated world ocean warmth content material pattern in CMIP3 fashions. Geophys. Res. Lett. 37, L17709 (2010).

  • Gouretski, V. & Reseghetti, F. On depth and temperature biases in bathythermograph knowledge: improvement of a brand new correction scheme primarily based on evaluation of a worldwide ocean database. Deep Sea Res. I 57, 812–833 (2010).

    Article 

    Google Scholar 

  • Graham, F. S. & McDougall, T. J. Quantifying the nonconservative manufacturing of conservative temperature, potential temperature, and entropy. J. Phys. Oceanogr. 43, 838–862 (2013).

    ADS 
    Article 

    Google Scholar 

  • McDougall, T. J. Potential enthalpy: a conservative oceanic variable for evaluating warmth content material and warmth fluxes. J. Phys. Oceanogr. 33, 945–963 (2003).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • McDougall, T. J. & Barker, P. M. Getting Began with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox (SCOR/IAPSO WG127, 2011); https://www.teos-10.org/pubs/Getting_Started.pdf

  • McDougall, T. J. et al. The interpretation of temperature and salinity variables in numerical ocean mannequin output, and the calculation of warmth fluxes and warmth content material. Geosci. Mannequin Dev. 14, 6445–6466 (2021).

    ADS 
    Article 

    Google Scholar 

  • Dix, M. et al. CSIRO-ARCCSS ACCESS-CM2 Mannequin Output Ready for CMIP6 CMIP (Earth System Grid Federation, 2019); https://doi.org/10.22033/esgf/cmip6.2281

  • Ziehn, T. et al. CSIRO ACCESS-ESM1.5 Mannequin Output Ready for CMIP6 CMIP (Earth System Grid Federation, 2019); https://doi.org/10.22033/esgf/cmip6.2288

  • Swart, N. C. et al. CCCma CanESM5 Mannequin Output Ready for CMIP6 CMIP (Earth System Grid Federation, 2019); https://doi.org/10.22033/esgf/cmip6.1303

  • Swart, N. C. et al. CCCma CanESM5-CanOE Mannequin Output Ready for CMIP6 CMIP (Earth System Grid Federation, 2019), https://doi.org/10.22033/esgf/cmip6.10205

  • Lovato, T. & Peano, D. CMCC CMCC-CM2-SR5 Mannequin Output Ready for CMIP6 CMIP (Earth System Grid Federation, 2020); https://doi.org/10.22033/esgf/cmip6.1362

  • Voldoire, A. CNRM-CERFACS CNRM-CM6-1 Mannequin Output Ready for CMIP6 CMIP (Earth System Grid Federation, 2018); https://doi.org/10.22033/esgf/cmip6.1375

  • Seferian, R. CNRM-CERFACS CNRM-ESM2-1 Mannequin Output Ready for CMIP6 CMIP (Earth System Grid Federation, 2018); https://doi.org/10.22033/esgf/cmip6.1391

  • EC-Earth Consortium. EC-Earth-Consortium EC-Earth3 mannequin Output Ready for CMIP6 CMIP (Earth System Grid Federation, 2019); https://doi.org/10.22033/esgf/cmip6.181

  • EC-Earth Consortium. EC-Earth-Consortium EC-Earth3-Veg Mannequin Output Ready for CMIP6 CMIP (Earth System Grid Federation, 2019); https://doi.org/10.22033/esgf/cmip6.642

  • EC-Earth Consortium. EC-Earth-Consortium EC-Earth3-Veg-LR Mannequin Output Ready for CMIP6 CMIP (Earth System Grid Federation, 2020); https://doi.org/10.22033/esgf/cmip6.643

  • Yu, Y. CAS FGOALS-f3-L Mannequin Output Ready for CMIP6 CMIP (Earth System Grid Federation, 2018); https://doi.org/10.22033/esgf/cmip6.1782

  • Ridley, J., Menary, M., Kuhlbrodt, T., Andrews, M. & Andrews, T. MOHC HadGEM3-GC31-LL Mannequin Output Ready for CMIP6 CMIP (Earth System Grid Federation, 2018); https://doi.org/10.22033/esgf/cmip6.419

  • Boucher, O. et al. IPSL IPSL-CM6A-LR Mannequin Output Ready for CMIP6 CMIP (Earth System Grid Federation, 2018); https://doi.org/10.22033/esgf/cmip6.1534

  • Hajima, T. et al. MIROC MIROC-ES2L Mannequin Output Ready for CMIP6 CMIP (Earth System Grid Federation, 2019); https://doi.org/10.22033/esgf/cmip6.902

  • Neubauer, D. et al. HAMMOZ-Consortium MPI-ESM1.2-HAM Mannequin Output Ready for CMIP6 CMIP (Earth System Grid Federation, 2019); https://doi.org/10.22033/esgf/cmip6.1622

  • Jungclaus, J. et al. MPI-M MPIESM1.2-HR mannequin Output Ready for CMIP6 CMIP (Earth System Grid Federation, 2019); https://doi.org/10.22033/esgf/cmip6.741

  • Wieners, Ok.-H. et al. MPI-M MPIESM1.2-LR Mannequin Output Ready for CMIP6 CMIP (Earth System Grid Federation, 2019); https://doi.org/10.22033/esgf/cmip6.742

  • Seland, O. et al. NCC NorESM2-LM Mannequin Output Ready for CMIP6 CMIP (Earth System Grid Federation, 2019); https://doi.org/10.22033/esgf/cmip6.502

  • Bentsen, M. et al. NCC NorESM2-MM Mannequin Output Ready for CMIP6 CMIP (Earth System Grid Federation, 2019); https://doi.org/10.22033/esgf/cmip6.506

  • Tang, Y. et al. OHC UKESM1.0-LL Mannequin Output Ready for CMIP6 CMIP (Earth System Grid Federation, 2019); https://doi.org/10.22033/esgf/cmip6.1569

  • Dix, M. et al. ACCESS-CM2 Mannequin Output Ready for CMIP6 below ‘DAMIP’. v1. CSIRO (Service Assortment, 2020); http://hdl.deal with.internet/102.100.100/422726?index=1

  • Ziehn, T. et al. CSIRO ACCESS-ESM1.5 Mannequin Output Ready for CMIP6 DAMIP (Earth System Grid Federation, 2019); https://doi.org/10.22033/esgf/cmip6.14362

  • Swart, N. C. et al. CCCma CanESM5 Mannequin Output Ready for CMIP6 DAMIP (Earth System Grid Federation, 2019); https://doi.org/10.22033/esgf/cmip6.1305

  • Voldoire, A. CNRM-CERFACS CNRM-CM6-1 Mannequin Output Ready for CMIP6 DAMIP (Earth System Grid Federation, 2019); https://doi.org/10.22033/esgf/cmip6.1376

  • Jones, G. MOHC HadGEM3-GC31-LL Mannequin Output Ready for CMIP6 DAMIP (Earth System Grid Federation, 2019); https://doi.org/10.22033/esgf/cmip6.471

  • Boucher, O. et al. IPSL IPSL-CM6A-LR Mannequin Output Ready for CMIP6 DAMIP (Earth System Grid Federation, 2018); https://doi.org/10.22033/esgf/cmip6.13801