Jinek, M. et al. RNA-programmed genome modifying in human cells. eLife 2, e00471 (2013).
Google Scholar
Cong, L. et al. Multiplex genome engineering utilizing CRISPR/Cas methods. Science 339, 819–823 (2013).
Google Scholar
Fu, Y. et al. Excessive-frequency off-target mutagenesis induced by CRISPR–Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013).
Google Scholar
Doudna, J. A. The promise and problem of therapeutic genome modifying. Nature 578, 229–236 (2020).
Google Scholar
Liu, M. et al. Engineered CRISPR/Cas9 enzymes enhance discrimination by slowing DNA cleavage to permit launch of off-target DNA. Nat. Commun. 11, 3576 (2020).
Google Scholar
Kim, D., Luk, Okay., Wolfe, S. A. & Kim, J. S. Evaluating and enhancing goal specificity of gene-editing nucleases and deaminases. Annu. Rev. Biochem. 88, 191–220 (2019).
Google Scholar
Slaymaker, I. M. & Gaudelli, N. M. Engineering Cas9 for human genome modifying. Curr. Opin. Struct. Biol. 69, 86–98 (2021).
Google Scholar
Kleinstiver, B. P. et al. Excessive-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target results. Nature 529, 490–495 (2016).
Google Scholar
Chen, J. S. et al. Enhanced proofreading governs CRISPR–Cas9 concentrating on accuracy. Nature 550, 407–410 (2017).
Google Scholar
Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016).
Google Scholar
Kim, N. et al. Prediction of the sequence-specific cleavage exercise of Cas9 variants. Nat. Biotechnol. 38, 1328–1336 (2020).
Google Scholar
Sternberg, S. H., Lafrance, B., Kaplan, M. & Doudna, J. A. Conformational management of DNA goal cleavage by CRISPR–Cas9. Nature 527, 110–113 (2015).
Google Scholar
Singh, D. et al. Mechanisms of improved specificity of engineered Cas9s revealed by single-molecule FRET evaluation. Nat. Struct. Mol. Biol. 25, 347–354 (2018).
Google Scholar
Jiang, F. et al. Constructions of a CRISPR–Cas9 R-loop advanced primed for DNA cleavage. Science 351, 867–871 (2016).
Google Scholar
Anders, C., Niewoehner, O., Duerst, A. & Jinek, M. Structural foundation of PAM-dependent goal DNA recognition by the Cas9 endonuclease. Nature 513, 569–573 (2014).
Google Scholar
Ran, F. A. et al. Genome engineering utilizing the CRISPR–Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).
Google Scholar
Dagdas, Y. S., Chen, J. S., Sternberg, S. H., Doudna, J. A. & Yildiz, A. A conformational checkpoint between DNA binding and cleavage by CRISPR–Cas9. Sci. Adv. 3, eaao0027 (2017).
Google Scholar
Zhu, X. et al. Cryo-EM constructions reveal coordinated area motions that govern DNA cleavage by Cas9. Nat. Struct. Mol. Biol. 26, 679–685 (2019).
Google Scholar
Cofsky, J. C., Soczek, Okay. M., Knott, G. J., Nogales, E. & Doudna, J. A. CRISPR–Cas9 bends and twists DNA to learn its sequence. Preprint at https://doi.org/10.1101/2021.09.06.459219 (2021).
Pacesa, M. & Jinek, M. Mechanism of R-loop formation and conformational activation of Cas9. Preprint at https://doi.org/10.1101/2021.09.16.460614 (2021).
Jones, S. Okay. et al. Massively parallel kinetic profiling of pure and engineered CRISPR nucleases. Nat. Biotechnol. 39, 84–93 (2021).
Google Scholar
Palermo, G. Construction and dynamics of the CRISPR–Cas9 catalytic advanced. J. Chem. Inf. Mannequin. 59, 2394–2406 (2019).
Google Scholar
Zhang, Y. et al. Catalytic-state construction and engineering of Streptococcus thermophilus Cas9. Nat. Catal. 3, 813–823 (2020).
Google Scholar
Jinek, M. et al. Constructions of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343, 1247997 (2014).
Google Scholar
Steitz, T. A. & Steitz, J. A. A normal two-metal-ion mechanism for catalytic RNA. Proc. Natl Acad. Sci. USA. 90, 6498–6502 (1993).
Google Scholar
Casalino, L., Nierzwicki, Ł., Jinek, M. & Palermo, G. Catalytic mechanism of non-target DNA cleavage in CRISPR–Cas9 revealed by ab initio molecular dynamics. ACS Catal. 10, 13596–13605 (2020).
Google Scholar
Aldag, P. et al. Probing the steadiness of the SpCas9–DNA advanced after cleavage. Nucleic Acids Res. 49, 12411–12421 (2021).
Google Scholar
Gong, S., Yu, H. H., Johnson, Okay. A. & Taylor, D. W. DNA unwinding is the first determinant of CRISPR–Cas9 exercise. Cell Rep. 22, 359–371 (2018).
Google Scholar
Solar, W. et al. Constructions of Neisseria meningitidis Cas9 complexes in catalytically poised and anti-CRISPR-inhibited states. Mol. Cell 76, 938–952 (2019).
Google Scholar
Nishimasu, H. et al. Crystal construction of Cas9 in advanced with information RNA and goal DNA. Cell 156, 935–949 (2014).
Google Scholar
Tsai, S. Q. et al. GUIDE-seq allows genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–198 (2015).
Google Scholar
Kuscu, C., Arslan, S., Singh, R., Thorpe, J. & Adli, M. Genome-wide evaluation reveals traits of off-target websites sure by the Cas9 endonuclease. Nat. Biotechnol. 32, 677–683 (2014).
Google Scholar
Dangerfield, T. L., Huang, N. Z. & Johnson, Okay. A. Excessive throughput quantification of quick nucleic acid samples by capillary electrophoresis with automated knowledge processing. Anal. Biochem. 629, 114239 (2021).
Google Scholar
Johnson, Okay. A. Kinetic Evaluation for the New Enzymology (KinTek, 2019).
Mastronarde, D. N. Automated electron microscope tomography utilizing strong prediction of specimen actions. J. Struct. Biol. 152, 36–51 (2005).
Google Scholar
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: algorithms for fast unsupervised cryo-EM construction dedication. Nat. Strategies 14, 290–296 (2017).
Google Scholar
Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Strategies 17, 1214–1221 (2020).
Google Scholar
Pettersen, E. F. et al. UCSF ChimeraX: construction visualization for researchers, educators, and builders. Protein Sci. 30, 70–82 (2021).
Google Scholar
Kidmose, R. T. et al. Namdinator—automated molecular dynamics versatile becoming of structural fashions into cryo-EM and crystallography experimental maps. IUCrJ 6, 526–531 (2019).
Google Scholar
Croll, T. I. ISOLDE: a bodily reasonable surroundings for mannequin constructing into low-resolution electron-density maps. Acta Crystallogr. D 74, 519–530 (2018).
Google Scholar
Pausch, P. et al. DNA interference states of the hypercompact CRISPR–CasΦ effector. Nat. Struct. Mol. Biol. 28, 652–661 (2021).
Google Scholar
Huang, X. et al. Structural foundation for 2 metal-ion catalysis of DNA cleavage by Cas12i2. Nat. Commun. 11, 5241 (2020).
Google Scholar
Nishimasu, H. et al. Crystal construction of Staphylococcus aureus Cas9. Cell 162, 1113–1126 (2015).
Google Scholar