Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Extraterrestrial trigger for the Cretaceous–Tertiary extinction. Science 208, 1095–1108 (1980).
Google Scholar
Smit, J. & Hertogen, J. An extraterrestrial occasion on the Cretaceous–Tertiary boundary. Nature 285, 198–200 (1980).
Google Scholar
Raup, D. M. Organic extinction in earth historical past. Science 231, 1528–1533 (1986).
Google Scholar
Schulte, P. et al. The Chicxulub asteroid affect and mass extinction on the Cretaceous–Paleogene boundary. Science 327, 1214–1218 (2010).
Google Scholar
DePalma, R. A. et al. A seismically induced onshore surge deposit on the KPg boundary, North Dakota. Proc. Natl Acad. Sci. USA 116, 8190–8199 (2019).
Google Scholar
Smit, J. et al. Tektite-bearing, deep-water clastic unit on the Cretaceous–Tertiary boundary in northeastern Mexico. Geology 20, 99–103 (1992).
Google Scholar
Alvarez, W. in The Cretaceous-Tertiary Occasion and Different Catastrophes in Earth Historical past (eds Ryder, G. et al.) 141–150 (Geological Society of America, 1996).
Smit, J. The worldwide stratigraphy of the Cretaceous–Tertiary boundary affect ejecta. Annu. Rev. Earth Planet. Sci. 27, 75–113 (1999).
Google Scholar
Morgan, J., Artemieva, N. & Goldin, T. Revisiting wildfires on the Okay–Pg boundary. J. Geophys. Res. 118, 1508–1520 (2013).
Vellekoop, J. et al. Speedy short-term cooling following the Chicxulub affect on the Cretaceous–Paleogene boundary. Proc. Natl Acad. Sci. USA 111, 7537–7541 (2014).
Google Scholar
Vellekoop, J. et al. Proof for Cretaceous-Paleogene boundary bolide ‘affect winter’ circumstances from New Jersey, USA. Geology 44, 619–622 (2016).
Google Scholar
Golovneva, L. B. The Maastrichtian (Late Cretaceous) local weather within the northern hemisphere. J. Geol. Soc. Lond. 181, 43–54 (2000).
Wolfe, J. A. & Upchurch Jr, G. R. North American nonmarine climates and vegetation through the Late Cretaceous. Palaeogeogr. Palaeocl. 61, 33–77 (1987).
Hallam, A. A evaluate of Mesozoic climates. J. Geol. Soc. London 142, 433–445 (1985).
Google Scholar
Adams, L. A. Age willpower and charge of development in Polyodon spathula, by the use of the expansion rings of the otoliths and dentary bone. Am. Midl. Nat. 28, 617–630 (1942).
Bakhshalizadeh, S., Bani, A., Abdolmalaki, S. & Moltschaniwskyj, N. Figuring out main occasions in two sturgeons’ life utilizing pectoral fin backbone ring construction: exploring the usage of a non-destructive technique. Environ. Sci. Pollut. R 24, 18554–18562 (2017).
Sanchez, S., Ahlberg, P. E., Trinajstic, Okay. M., Mirone, A. & Tafforeau, P. Three-dimensional synchrotron digital paleohistology: a brand new perception into the world of fossil bone microstructures. Microsc. Microanal. 18, 1095–1105 (2012).
Google Scholar
Davesne, D., Schmitt, A. D., Fernandez, V., Benson, R. B. & Sanchez, S. Three‐dimensional characterization of osteocyte volumes at a number of scales, and its relationship with bone biology and genome evolution in ray‐finned fishes. J. Evol. Biol. 33, 808–830 (2020).
Google Scholar
Tafforeau, P., Bentaleb, I., Jaeger, J.-J. & Martin, C. Nature of enamel laminations and mineralization in rhinoceros enamel utilizing histology and X-ray synchrotron microtomography: potential implications for palaeoenvironmental isotopic research. Palaeogeogr. Palaeocl. 246, 206–227 (2007).
Castanet, J. Bone—Quantity 7: Bone Progress (ed. Corridor, B. Okay.) 245–283 (CRC Press, 1993).
Hedges, R. E. Bone diagenesis: an summary of processes. Archaeometry 44, 319–328 (2002).
Google Scholar
Dumont, M. et al. Synchrotron XRF analyses of component distribution in fossilized sauropod dinosaur bones. Powder Diffr. 24, 130–134 (2009).
Google Scholar
Pradel, A. et al. Cranium and mind of a 300-million-year-old chimaeroid fish revealed by synchrotron holotomography. Proc. Natl Acad. Sci. USA 106, 5224–5228 (2009).
Google Scholar
Weigele, J. & Franz‐Odendaal, T. A. Purposeful bone histology of zebrafish reveals two varieties of endochondral ossification, several types of osteoblast clusters and a brand new bone kind. J. Anat. 229, 92–103 (2016).
Google Scholar
Enlow, D. H. The Human Face. An Account of the Postnatal Progress and Growth of the Craniofacial Skeleton (Harper and Row, 1968).
Grande, L. & Bemis, W. E. Osteology and phylogenetic relationships of fossil and up to date paddlefishes (Polyodontidae) with feedback on the interrelationships of Acipenseriformes. J. Vert. Paleo. 11, 1–121 (1991).
De Ricqlès, A. J., Meunier, F. J., Castanet, J. & Francillon-Vieillot, H. Bone 3, Bone Matrix and Bone Particular Merchandise (CRC Press, 1991).
Corridor, B. Okay. Bones and Cartilage: Developmental and Evolutionary Skeletal Biology (Elsevier, 2005).
Bemis, W. E. & Kynard, B. Sturgeon rivers: an introduction to acipenseriform biogeography and life historical past. Environ. Biol. Fish 48, 167–183 (1997).
LeBreton, G. T., Beamish, F. W. H. & McKinley, S. R. (eds) Sturgeons and paddlefish of North America, Vol. 27 (Springer, 2004)
Blackwell, B. G., Murphy, B. R. & Pitman, V. M. Suitability of meals sources and physicochemical parameters within the decrease Trinity River, Texas for paddlefish. J. Freshw. Ecol. 10, 163–175 (1995).
Google Scholar
Fry, B. & Sherr, E. B. 𝛿13C measurements as indicators of carbon move in marine and freshwater ecosystems. Ecol. Stud. https://doi.org/10.1007/978-1-4612-3498-2_12 (1989).
Finlay, J. C. Steady‐carbon‐isotope ratios of river biota: implications for power move in lotic meals webs. Ecology 82, 1052–1064 (2001).
Robertson, D. S., Lewis, W. M., Sheehan, P. M. & Toon, O. B. Okay–Pg extinction: reevaluation of the warmth‐hearth speculation. J. Geophys. Res. 118, 329–336 (2013).
Wolfe, J. A. Palaeobotanical proof for a June ‘affect winter’ on the Cretaceous/Tertiary boundary. Nature 352, 420–423 (1991).
Google Scholar
Nichols, D. J. Vegetation on the Okay/T boundary. Nature 356, 295–295 (1992).
Google Scholar
Hickey, L. J. & McWeeney, L. J. Vegetation on the Okay/T boundary. Nature 356, 295–296 (1992).
Google Scholar
McIver, E. E. Paleobotanical proof for ecosystem disruption on the Cretaceous–Tertiary boundary from Wooden Mountain, Saskatchewan, Canada. Can. J. Earth Sci. 36, 775–789 (1999).
Google Scholar
Upchurch, G. R., Lomax, B. H. & Beerling, D. J. Paleobotanical proof for climatic change throughout the Cretaceous–Tertiary boundary, North America: twenty years after Wolfe and Upchurch. Cour. Forsch. Senck 258, 57 (2007).
Kring, D. A. The Chicxulub affect occasion and its environmental penalties on the Cretaceous–Tertiary boundary. Palaeogeogr. Palaeocl. 255, 4–21 (2007).
Robertson, D. S., McKenna, M. C., Toon, O. B., Hope, S. & Lillegraven, J. A. Survival within the first hours of the Cenozoic. Geol. Soc. Am. Bull. 116, 760–768 (2004).
Google Scholar
D’Hondt, S., Pilson, M. E., Sigurdsson, H., Hanson Jr, A. Okay. & Carey, S. Floor-water acidification and extinction on the Cretaceous–Tertiary boundary. Geology 22, 983–986 (1994).
Google Scholar
Erickson, G. M., Zelenitsky, D. Okay., Kay, D. I. & Norell, M. A. Dinosaur incubation intervals immediately decided from growth-line counts in embryonic tooth present reptilian-grade improvement. Proc. Natl Acad. Sci. USA 114, 540–545 (2017).
Google Scholar
Donovan, M. P., Iglesias, A., Wilf, P., Labandeira, C. C. & Cúneo, N. R. Speedy restoration of Patagonian plant–insect associations after the end-Cretaceous extinction. Nat. Ecol. Evol. 1, 0012 (2016).
Fernandez, V. et al. Synchrotron reveals Early Triassic odd couple: injured amphibian and aestivating therapsid share burrow. PLoS ONE 8, e64978 (2013).
Google Scholar
Nowack, J., Cooper, C. E. & Geiser, F. Cool echidnas survive the fireplace. Proc. R. Soc. B 283, 20160382 (2016).
Google Scholar
Lovegrove, B. G., Lobban, Okay. D. & Levesque, D. L. Mammal survival on the Cretaceous–Palaeogene boundary: metabolic homeostasis in extended tropical hibernation in tenrecs. Proc. R. Soc. B 281, 20141304 (2014).
Google Scholar
Withers, P. C. & Cooper, C. in Encyclopedia of Ecology (eds Jorgensen, S. E. & Fath, B.) 952–957 (Elsevier, 2008).
Subject, D. J. et al. Early evolution of contemporary birds structured by international forest collapse on the end-Cretaceous mass extinction. Curr. Biol. 28, 1825–1831 (2018).
Google Scholar
Schleuning, M. et al. Ecological networks are extra delicate to plant than to animal extinction beneath local weather change. Nat. Commun. 7, 13965 (2016).
Google Scholar
Sanchez, S. et al. 3D microstructural structure of muscle attachments in extant and fossil vertebrates revealed by synchrotron microtomography. PloS ONE 8, e56992 (2013).
de Buffrénil, V., Quilhac, A. & Castanet, J. in Vertebrate Skeletal Histology and Paleohistology (eds de Buffrénil, V. et al.) 626–645 (Routledge, 2021).
Lee, A. H. & O’Connor, P. M. Bone histology confirms determinate development and small physique measurement within the noasaurid theropod Masiakasaurus knopfleri. J. Vertebr. Paleontol. 33, 865–876 (2013).
Klevezal, G. A. & Stewart, B. S. Patterns and calibration of layering in tooth cementum of feminine northern elephant seals, Mirounga angustirostris. J. Mammal. 75, 483–487 (1994).
Woodward, H. N., Padian, Okay. and Lee, A. H. In Bone Histology of Fossil Tetrapods—Advancing Strategies, Evaluation and Interpretation (eds Padian, Okay. & E. T. Lamm) 195–215 (Univ. California Press, 2013).
Vonhof, H. B. et al. Excessive‐precision secure isotope evaluation of < 5 μg CaCO3 samples by steady‐move mass spectrometry. Speedy Commun. Mass Spectr. 34, e8878 (2020).
Google Scholar
Pucéat, E. et al. Revised phosphate–water fractionation equation reassessing paleotemperatures derived from biogenic apatite. Earth Planet. Sci. Lett. 298, 135–142 (2010).
Google Scholar
Vennemann, T. W., Hegner, E., Cliff, G. & Benz, G. W. Isotopic composition of current shark tooth as a proxy for environmental circumstances. Geochim. Cosmochim. Acta 65, 1583–1599 (2001).
Google Scholar
Tafforeau, P. et al. Purposes of X-ray synchrotron microtomography for non-destructive 3D research of paleontological specimens. Appl. Phys. A 83, 195–202 (2006).
Google Scholar
Tafforeau, P. & Smith, T. M. Nondestructive imaging of hominoid dental microstructure utilizing part distinction X-ray synchrotron microtomography. J. Hum. Evol. 54, 272–278 (2008).
Google Scholar