The Mesozoic terminated in boreal spring


  • Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Extraterrestrial trigger for the Cretaceous–Tertiary extinction. Science 208, 1095–1108 (1980).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Smit, J. & Hertogen, J. An extraterrestrial occasion on the Cretaceous–Tertiary boundary. Nature 285, 198–200 (1980).

    ADS 
    CAS 

    Google Scholar 

  • Raup, D. M. Organic extinction in earth historical past. Science 231, 1528–1533 (1986).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Schulte, P. et al. The Chicxulub asteroid affect and mass extinction on the Cretaceous–Paleogene boundary. Science 327, 1214–1218 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • DePalma, R. A. et al. A seismically induced onshore surge deposit on the KPg boundary, North Dakota. Proc. Natl Acad. Sci. USA 116, 8190–8199 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smit, J. et al. Tektite-bearing, deep-water clastic unit on the Cretaceous–Tertiary boundary in northeastern Mexico. Geology 20, 99–103 (1992).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Alvarez, W. in The Cretaceous-Tertiary Occasion and Different Catastrophes in Earth Historical past (eds Ryder, G. et al.) 141–150 (Geological Society of America, 1996).

  • Smit, J. The worldwide stratigraphy of the Cretaceous–Tertiary boundary affect ejecta. Annu. Rev. Earth Planet. Sci. 27, 75–113 (1999).

    ADS 
    CAS 

    Google Scholar 

  • Morgan, J., Artemieva, N. & Goldin, T. Revisiting wildfires on the Okay–Pg boundary. J. Geophys. Res. 118, 1508–1520 (2013).

    Google Scholar 

  • Vellekoop, J. et al. Speedy short-term cooling following the Chicxulub affect on the Cretaceous–Paleogene boundary. Proc. Natl Acad. Sci. USA 111, 7537–7541 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vellekoop, J. et al. Proof for Cretaceous-Paleogene boundary bolide ‘affect winter’ circumstances from New Jersey, USA. Geology 44, 619–622 (2016).

    ADS 

    Google Scholar 

  • Golovneva, L. B. The Maastrichtian (Late Cretaceous) local weather within the northern hemisphere. J. Geol. Soc. Lond. 181, 43–54 (2000).

  • Wolfe, J. A. & Upchurch Jr, G. R. North American nonmarine climates and vegetation through the Late Cretaceous. Palaeogeogr. Palaeocl. 61, 33–77 (1987).

    Google Scholar 

  • Hallam, A. A evaluate of Mesozoic climates. J. Geol. Soc. London 142, 433–445 (1985).

    ADS 

    Google Scholar 

  • Adams, L. A. Age willpower and charge of development in Polyodon spathula, by the use of the expansion rings of the otoliths and dentary bone. Am. Midl. Nat. 28, 617–630 (1942).

    Google Scholar 

  • Bakhshalizadeh, S., Bani, A., Abdolmalaki, S. & Moltschaniwskyj, N. Figuring out main occasions in two sturgeons’ life utilizing pectoral fin backbone ring construction: exploring the usage of a non-destructive technique. Environ. Sci. Pollut. R 24, 18554–18562 (2017).

    Google Scholar 

  • Sanchez, S., Ahlberg, P. E., Trinajstic, Okay. M., Mirone, A. & Tafforeau, P. Three-dimensional synchrotron digital paleohistology: a brand new perception into the world of fossil bone microstructures. Microsc. Microanal. 18, 1095–1105 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Davesne, D., Schmitt, A. D., Fernandez, V., Benson, R. B. & Sanchez, S. Three‐dimensional characterization of osteocyte volumes at a number of scales, and its relationship with bone biology and genome evolution in ray‐finned fishes. J. Evol. Biol. 33, 808–830 (2020).

    PubMed 

    Google Scholar 

  • Tafforeau, P., Bentaleb, I., Jaeger, J.-J. & Martin, C. Nature of enamel laminations and mineralization in rhinoceros enamel utilizing histology and X-ray synchrotron microtomography: potential implications for palaeoenvironmental isotopic research. Palaeogeogr. Palaeocl. 246, 206–227 (2007).

    Google Scholar 

  • Castanet, J. Bone—Quantity 7: Bone Progress (ed. Corridor, B. Okay.) 245–283 (CRC Press, 1993).

  • Hedges, R. E. Bone diagenesis: an summary of processes. Archaeometry 44, 319–328 (2002).

    CAS 

    Google Scholar 

  • Dumont, M. et al. Synchrotron XRF analyses of component distribution in fossilized sauropod dinosaur bones. Powder Diffr. 24, 130–134 (2009).

    ADS 
    CAS 

    Google Scholar 

  • Pradel, A. et al. Cranium and mind of a 300-million-year-old chimaeroid fish revealed by synchrotron holotomography. Proc. Natl Acad. Sci. USA 106, 5224–5228 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weigele, J. & Franz‐Odendaal, T. A. Purposeful bone histology of zebrafish reveals two varieties of endochondral ossification, several types of osteoblast clusters and a brand new bone kind. J. Anat. 229, 92–103 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Enlow, D. H. The Human Face. An Account of the Postnatal Progress and Growth of the Craniofacial Skeleton (Harper and Row, 1968).

  • Grande, L. & Bemis, W. E. Osteology and phylogenetic relationships of fossil and up to date paddlefishes (Polyodontidae) with feedback on the interrelationships of Acipenseriformes. J. Vert. Paleo. 11, 1–121 (1991).

    Google Scholar 

  • De Ricqlès, A. J., Meunier, F. J., Castanet, J. & Francillon-Vieillot, H. Bone 3, Bone Matrix and Bone Particular Merchandise (CRC Press, 1991).

  • Corridor, B. Okay. Bones and Cartilage: Developmental and Evolutionary Skeletal Biology (Elsevier, 2005).

  • Bemis, W. E. & Kynard, B. Sturgeon rivers: an introduction to acipenseriform biogeography and life historical past. Environ. Biol. Fish 48, 167–183 (1997).

    Google Scholar 

  • LeBreton, G. T., Beamish, F. W. H. & McKinley, S. R. (eds) Sturgeons and paddlefish of North America, Vol. 27 (Springer, 2004)

  • Blackwell, B. G., Murphy, B. R. & Pitman, V. M. Suitability of meals sources and physicochemical parameters within the decrease Trinity River, Texas for paddlefish. J. Freshw. Ecol. 10, 163–175 (1995).

    CAS 

    Google Scholar 

  • Fry, B. & Sherr, E. B. 𝛿13C measurements as indicators of carbon move in marine and freshwater ecosystems. Ecol. Stud. https://doi.org/10.1007/978-1-4612-3498-2_12 (1989).

  • Finlay, J. C. Steady‐carbon‐isotope ratios of river biota: implications for power move in lotic meals webs. Ecology 82, 1052–1064 (2001).

    Google Scholar 

  • Robertson, D. S., Lewis, W. M., Sheehan, P. M. & Toon, O. B. Okay–Pg extinction: reevaluation of the warmth‐hearth speculation. J. Geophys. Res. 118, 329–336 (2013).

    Google Scholar 

  • Wolfe, J. A. Palaeobotanical proof for a June ‘affect winter’ on the Cretaceous/Tertiary boundary. Nature 352, 420–423 (1991).

    ADS 

    Google Scholar 

  • Nichols, D. J. Vegetation on the Okay/T boundary. Nature 356, 295–295 (1992).

    ADS 

    Google Scholar 

  • Hickey, L. J. & McWeeney, L. J. Vegetation on the Okay/T boundary. Nature 356, 295–296 (1992).

    ADS 

    Google Scholar 

  • McIver, E. E. Paleobotanical proof for ecosystem disruption on the Cretaceous–Tertiary boundary from Wooden Mountain, Saskatchewan, Canada. Can. J. Earth Sci. 36, 775–789 (1999).

    ADS 

    Google Scholar 

  • Upchurch, G. R., Lomax, B. H. & Beerling, D. J. Paleobotanical proof for climatic change throughout the Cretaceous–Tertiary boundary, North America: twenty years after Wolfe and Upchurch. Cour. Forsch. Senck 258, 57 (2007).

    Google Scholar 

  • Kring, D. A. The Chicxulub affect occasion and its environmental penalties on the Cretaceous–Tertiary boundary. Palaeogeogr. Palaeocl. 255, 4–21 (2007).

    Google Scholar 

  • Robertson, D. S., McKenna, M. C., Toon, O. B., Hope, S. & Lillegraven, J. A. Survival within the first hours of the Cenozoic. Geol. Soc. Am. Bull. 116, 760–768 (2004).

    ADS 

    Google Scholar 

  • D’Hondt, S., Pilson, M. E., Sigurdsson, H., Hanson Jr, A. Okay. & Carey, S. Floor-water acidification and extinction on the Cretaceous–Tertiary boundary. Geology 22, 983–986 (1994).

    ADS 
    CAS 

    Google Scholar 

  • Erickson, G. M., Zelenitsky, D. Okay., Kay, D. I. & Norell, M. A. Dinosaur incubation intervals immediately decided from growth-line counts in embryonic tooth present reptilian-grade improvement. Proc. Natl Acad. Sci. USA 114, 540–545 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Donovan, M. P., Iglesias, A., Wilf, P., Labandeira, C. C. & Cúneo, N. R. Speedy restoration of Patagonian plant–insect associations after the end-Cretaceous extinction. Nat. Ecol. Evol. 1, 0012 (2016).

    Google Scholar 

  • Fernandez, V. et al. Synchrotron reveals Early Triassic odd couple: injured amphibian and aestivating therapsid share burrow. PLoS ONE 8, e64978 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nowack, J., Cooper, C. E. & Geiser, F. Cool echidnas survive the fireplace. Proc. R. Soc. B 283, 20160382 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lovegrove, B. G., Lobban, Okay. D. & Levesque, D. L. Mammal survival on the Cretaceous–Palaeogene boundary: metabolic homeostasis in extended tropical hibernation in tenrecs. Proc. R. Soc. B 281, 20141304 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Withers, P. C. & Cooper, C. in Encyclopedia of Ecology (eds Jorgensen, S. E. & Fath, B.) 952–957 (Elsevier, 2008).

  • Subject, D. J. et al. Early evolution of contemporary birds structured by international forest collapse on the end-Cretaceous mass extinction. Curr. Biol. 28, 1825–1831 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Schleuning, M. et al. Ecological networks are extra delicate to plant than to animal extinction beneath local weather change. Nat. Commun. 7, 13965 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanchez, S. et al. 3D microstructural structure of muscle attachments in extant and fossil vertebrates revealed by synchrotron microtomography. PloS ONE 8, e56992 (2013).

  • de Buffrénil, V., Quilhac, A. & Castanet, J. in Vertebrate Skeletal Histology and Paleohistology (eds de Buffrénil, V. et al.) 626–645 (Routledge, 2021).

  • Lee, A. H. & O’Connor, P. M. Bone histology confirms determinate development and small physique measurement within the noasaurid theropod Masiakasaurus knopfleri. J. Vertebr. Paleontol. 33, 865–876 (2013).

  • Klevezal, G. A. & Stewart, B. S. Patterns and calibration of layering in tooth cementum of feminine northern elephant seals, Mirounga angustirostris. J. Mammal. 75, 483–487 (1994).

    Google Scholar 

  • Woodward, H. N., Padian, Okay. and Lee, A. H. In Bone Histology of Fossil Tetrapods—Advancing Strategies, Evaluation and Interpretation (eds Padian, Okay. & E. T. Lamm) 195–215 (Univ. California Press, 2013).

  • Vonhof, H. B. et al. Excessive‐precision secure isotope evaluation of < 5 μg CaCO3 samples by steady‐move mass spectrometry. Speedy Commun. Mass Spectr. 34, e8878 (2020).

    CAS 

    Google Scholar 

  • Pucéat, E. et al. Revised phosphate–water fractionation equation reassessing paleotemperatures derived from biogenic apatite. Earth Planet. Sci. Lett. 298, 135–142 (2010).

    ADS 

    Google Scholar 

  • Vennemann, T. W., Hegner, E., Cliff, G. & Benz, G. W. Isotopic composition of current shark tooth as a proxy for environmental circumstances. Geochim. Cosmochim. Acta 65, 1583–1599 (2001).

    ADS 
    CAS 

    Google Scholar 

  • Tafforeau, P. et al. Purposes of X-ray synchrotron microtomography for non-destructive 3D research of paleontological specimens. Appl. Phys. A 83, 195–202 (2006).

    ADS 
    CAS 

    Google Scholar 

  • Tafforeau, P. & Smith, T. M. Nondestructive imaging of hominoid dental microstructure utilizing part distinction X-ray synchrotron microtomography. J. Hum. Evol. 54, 272–278 (2008).

    PubMed 

    Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *